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A new computational framework for a coupled PIC-DSMC tool using multiple GPUs to 
model the kinetic behavior of electrons in plasma plumes is presented in this work. The 
disparate length scales of the Debye length and the collisional mean free path are resolved 
by using separate, independent linearized Morton Z-ordered forest of trees. A 2:1 restraint 
is imposed for the PIC module to solve partial differential equations in the context of 
an AMR/Octree framework. The MPI-CUDA parallelization strategies used to implement a 
preconditioned conjugate gradient method for solving the electrostatic Poisson’s equation 
on the 2:1 octree are discussed and the scaling of the code to near ideal speedup as 
a function of the number of GPUs is demonstrated. The PIC method is validated using 
analytical test cases, and the octree-based PIC simulations are found to be ten times more 
efficient compared to the uniform grid method especially for plume simulations which 
have large density variations. The computational strategies are then demonstrated with the 
simulation of collisionless, mesothermal plasma plumes using a kinetic approach for both 
ions and electrons. The effect of ion mass and electron source location are analyzed by 
comparing plume dynamics and electron velocity distribution functions. It is shown that 
a more confined mesothermal plume is observed for the heavier xenon ions, present in 
electric propulsion devices, compared to protons. The confinement of the xenon plume 
traps the electrons resulting in higher electron temperatures compared to the proton 
plasma case. In both the simulations, however, the electron temperature is found to be 
anisotropic. Finally, when a shifted electron source location case is considered the electron 
velocity distributions in all three directions are found to be unequal and non-Maxwellian, 
contrary to the co-located case. The ion beam is observed to attract the electrons, which 
initially oscillate between the radial edges of the ion beam as confirmed by the bi-modal 
velocity distribution at early times. As the plume evolves, it electrostatically traps these 
electrons within the ion beam, allowing them to thermalize, as observed from the single-
peak electron velocity distribution functions at later times. These results demonstrate that 
GPUs can efficiently accelerate computations of a fully kinetic approach to enable the study 
of electron kinetics and neutralization with the highest physical fidelity.
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1. Introduction

Electric propulsion (EP) is an attractive solution for station-keeping and attitude control of small-satellites and cube-
satellites in the space environment. With increase in the sophistication of satellites, the prediction of their reliability and 
operational lifetime of the solar-cell arrays is gaining importance. EP devices generate thrust by accelerating ionized propel-
lant, usually xenon, using an applied electric and sometimes magnetic field, to produce a plume with the required exhaust 
velocity [1]. This weakly ionized plasma plume consists of 10% xenon ions with a speed of 30–60 km/s and 90% un-ionized 
neutrals. The high speed beam ions undergo collisions, called charge-exchange (CEX) [1] reactions, with the plume and am-
bient neutrals to generate slower ions with a speed of 0.5–1 km/s [2]. These CEX ions are influenced by the electric field 
induced between the plume and spacecraft surfaces or solar panels resulting in their backflow or reverse streaming. The 
ions in the backflow region impinge on the solar panels with sufficient energy, on the order of 10 eV [3], to cause changes 
in the electro-chemical properties of the surface as well as erosion, affecting their efficiency. In order to prevent a build-up 
of positive charge in the plume and to reduce the spacecraft charge, the plume is neutralized by an electron beam emitted 
from an external hollow cathode device on the thruster. Inclusion of these hollow cathode plumes [4,5] is essential as the 
electrons play an important role in the charge distribution, density, and energy of the CEX ions in the backflow region, 
and in turn, the prediction of solar cell performance. Although this work is motivated by EP, the numerical methodologies 
discussed in this paper are also relevant to other plasma applications, such as, understanding instabilities in astrophysical 
jets [6,7], modeling of solar wind interactions [8], streamer formation studies [9–11], as well as plasma–surface interactions 
to modify biomaterials [12,13].

Due to the low density of charged species in the thruster plume, on the order of 1015/m3 for ion thruster plumes 
[1], the continuum assumption becomes invalid and a kinetic approach is required to model the physical processes of the 
EP thruster plume. Particle-In-Cell (PIC) [14] is a well established kinetic approach used to compute the time evolving 
characteristics of the charged particles in the plasma and their interactions with the induced electric field. In this method, 
the charged and neutral species are modeled as computational macroparticles, wherein each macroparticle represents a 
large number of real ions, electrons, or neutrals. The computational domain is first discretized into a grid and the charge 
density distribution is determined by mapping particles to the cells. The electric field is obtained by solving Poisson’s 
equation in an electrostatic application, and the electric and magnetic fields are evaluated by solving Maxwell’s equations 
for electromagnetic applications. Finally, the forces exerted by the fields push the charged particles to new positions thereby 
generating a new charge distribution every timestep. The PIC approach has been used for a wide variety of applications such 
as, modeling of electromagnetic solar wind interactions with lunar crustal magnetic anomalies [8], laser–plasma interactions 
[15], relativistic modeling of pulsar magnetosphere [16], dusty plasmas [17–19], as well as for thruster plumes [20–25].

PIC codes perform particle movement and field-solve using explicit or implicit schemes. In explicit PIC schemes, where 
the particle movement and field solve are decoupled, the cell size of the grid used for the electric field calculations must 
be less than the local Debye length [26] and the timestep should be such that, �tωpe < 0.1, to obtain accurate results 
without numerical instabilities [14,26,27]. On the other hand, numerically stable semi-implicit [28,29] and implicit [30,31]
PIC algorithms can accurately model non-linear plasma evolution using coarser cell sizes and at least an order of magnitude 
larger timestep compared to the explicit method, but with increased complexity in their implementation. In this work, since 
we are interested in accurately resolving the transient electron kinetics, the use of cell sizes less that the local Debye length 
and small timesteps is essential. In addition, the use of linearized octrees and parallelization strategies discussed in this 
work are applicable even for semi-implicit, and implicit schemes.

PIC tools have traditionally used a uniform Cartesian grid [32] to discretize the domain and compute the self-consistent 
electric and magnetic fields. However, for problems with multiple length-scales, such as, the expanding plasma plume as 
well as plasma–surface interactions, the Debye length is smaller near the thruster exit or in the sheath region compared 
to the far-field. The use of a uniform grid with cell size less than the smallest Debye length would unnecessarily increase 
the number of cells in the domain and the computational cost. Therefore, an adaptive mesh refinement (AMR) approach 
[2,33–38] to refine cells in the regions with small Debye lengths and coarsen in the regions where the Debye length is large 
can be advantageous. The three-dimensional hierarchical tree structure used to store such an AMR grid is called an octree 
[39]. Solving Poisson’s equation accurately on such octree grids is crucial for computing the electric field in PIC, but, it 
requires strategies different from the uniform grid approach to account for neighboring cells with different sizes. A number 
of Poisson solver libraries, such as, PETSC [40], Dendro [41], and Deal.II [42] are available for use on octree grids. Poisson’s 
equation has been solved on octree grids using a multigrid approach as well [43–45]. Also a finite volume approach has 
previously been used to solve Poisson’s equation on an octree structure [46,33,47]. These approaches have used multiple 
distributed-memory CPU systems for parallelization by employing the MPI paradigm.

Recently, general-purpose computing on Graphics Processor Units (GPGPUs) is being exploited to accelerate code perfor-
mance by employing massively large number of cores or threads. GPUs have been used for solving Poisson’s equation for 
PIC methods [48–51]. PIConGPU [49,52] used 18,000 GPUs to simulate Kelvin–Helmholtz instabilities in an effort to model 
astrophysical jets and obtained nearly 70% strong scaling efficiency. Bastrakov et al. [53] developed a three-dimensional PIC 
tool called PICADOR to perform simulations using GPUs as well as Intel accelerators. However, a uniform grid was used in 
these tools for solving Poisson’s equations. For the plasma plume simulations of interest here an octree approach is required 
since the Debye length is highly non-uniform.
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In addition to the PIC method that models the electric field, the well known particle-based Direct Simulation Monte 
Carlo [54] (DSMC) approach is required to model the neutral-ion momentum and CEX collisions. In our recent work [55], 
we developed an octree-based solver that uses multiple-GPUs, called Cuda-based Hybrid Approach for Octree Simulations 
(CHAOS), to perform DSMC simulations. The code achieved 85% strong scaling and 100% weak scaling efficiency for argon 
gas flow through porous media. The main contribution of our previous work was that we employed a linearized octree 
structure as opposed to a pointer-based data structure, and exploited the Morton encoding approach to map particles to 
the octree cells, also known as leaf nodes. This particle-to-grid mapping, which has been shown to be a computationally 
expensive procedure, even for the PIC method [56], is optimized for linearized octrees and accelerated using GPUs [55]. 
Previously, Korkut et al. [2] implemented the momentum and charge-exchange collisions between the ions and the neutrals, 
including species weighting factors and species-dependent timestep to account for their different number densities and 
speeds. Since a plasma plume evolution is generally governed by both collisions and the electric field, a coupled PIC-DSMC 
[2,33,57] approach has been used.

In the present work, we implement an explicit Particle-In-Cell module in CHAOS that can be coupled with the DSMC 
module using the MPI-CUDA paradigm for parallelization. The dominant length scales for PIC and DSMC are governed by 
the electron Debye length and ion-neutral mean free path, respectively. To satisfy the multiple length-scales for the different 
physical processes, we implement a modularized framework, wherein the DSMC module constructs a linearized octree to 
satisfy collision length-scales and the PIC module uses its own linearized octree that satisfies the electric field length scales. 
The grid construction and domain decomposition methodologies for the PIC-DSMC framework as well as the strategies used 
to solve Poisson’s equation on an octree grid, using multiple GPUs, are discussed in Sec. 2. In Sec. 3, we demonstrate the 
accuracy of the PIC solver and its ability to conserve momentum and energy by performing standard test cases. We also 
compare the octree simulations with uniform grid, and show that for cases with large density gradients, the octree method 
is approximately ten times more efficient than uniform grid.

Finally, we perform collisionless mesothermal plasma simulations such that vte >> vibeam >> vti , where vte , vibeam , and 
vti , are the electron thermal velocity, beam velocity, and ion thermal velocity, respectively [58]. PIC-DSMC coupled results 
will be presented at a future date. Wang et al. [58], and Hu et al. [59,60], have modeled two-dimensional mesothermal 
plumes with a reduced ion-to-electron mass ratio of 1836, where the ion and electron sources are co-located. But, electric 
thrusters typically use xenon as propellant and the electron source is shifted from the thruster exit. Usui et al. [61] have 
modeled a mesothermal plume with a shifted electron source, but, the ions were modeled with a reduced mass equal 
to that of a proton. For comparison of electron kinetics with these previous studies, we first perform three-dimensional 
mesothermal plume simulations with reduced ion mass and co-located electron source using the PIC module in CHAOS. 
Then we sequentially increase the ion mass to model xenon ions and shift the electron source location to study their 
effect on the electron kinetics as well as the plume neutralization. The simulation set-up is given in Sec. 4, and the plume 
structure as well as the interesting electron kinetic behavior due to the induced electrostatic forces is analyzed in Sec. 5.

2. Numerical implementation and parallelization strategies

In this section, we present the strategies used to implement the MPI-CUDA parallelization of the PIC algorithm and to 
couple the DSMC and PIC modules. A flowchart of the coupled PIC-DSMC framework in CHAOS is shown in Fig. 1. The 
unique features in CHAOS, that is common to both particle methods, PIC and DSMC, is the implementation of linearized 
Z-ordered octrees and efficient fast bitwise computations to perform particle-to-octree mapping using GPUs. Even though 
the strategy to construct the linearized octrees is the same for PIC and DSMC, due to the different cell size criteria required 
for collisions and computation of the electric field, separate forest of trees (FOT) are used in the two modules, as will be 
discussed in subsection 2.1. Particle movement is grid-independent and the particles are mapped to the respective octrees 
in the DSMC and PIC modules. Since Poisson’s equation is solved on the octree, an additional spatial restraint, known as 
2:1, is imposed, as discussed in Sec. 2.2. In Sec. 2.3, we discuss the domain decomposition strategy implemented for load 
balancing as well as the methodology used to store the list of face neighbors that are contained on different processors. 
The parallelization strategy used to implement the preconditioned conjugate gradient (PCG) method to compute the electric 
potential is discussed in Sec. 2.4. The near-ideal speedup obtained with 128 GPUs is presented in Sec. 3.5 for a mesothermal 
plume simulation with xenon ions.

2.1. Octree construction for PIC-DSMC

An octree is a three-dimensional tree data structure that is used to bin particles into nodes, wherein each node spans 
a certain spatial volume of the computational domain. The entire domain represents the root of the tree, and the root 
undergoes recursive division until a predetermined criterion, usually dictated by the dominant length scales, is satisfied to 
generate the leaf nodes. The leaf nodes are analogous to the computational cells in a uniform grid. If the problem size 
is large, the domain is divided into multiple roots and each root undergoes recursive division to give a forest of octrees 
(FOT). As mentioned earlier, the modeling of ion or hall thruster plasma plumes is governed by the DSMC collisions and 
the electric field computed using PIC, which have different length scales and therefore separate octree division criteria. For 
the DSMC collisions, the root is recursively sub-divided until the final leaf node size is less than the local mean free path, 
but, for the electric field PIC computations, the local Debye length must be used as the octree division criterion. However, 
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Fig. 1. Flowchart for the PIC-DSMC framework in CHAOS.

for the plume simulations of our interest, the local Debye length increases by a factor of five from the thruster exit to 
the leading edge of the plume, and the electron number density and temperature at the thruster exit are such that, at a 
given location, the local Debye length is at least two orders of magnitude smaller than the local mean free path required 
for collisions. The leaf nodes of the FOT can satisfy only one refinement criterion, and therefore to satisfy the disparate 
length scales of the two coupled physical process without compromising on the computational efficiency, we use two linear 
FOTs, one for the PIC computations constructed using the local Debye length criterion called the E-FOT, and the second for 
the DSMC collisions constructed using the local mean free path criterion, called the C-FOT. Such an implementation with 
multiple FOTs has been previously implemented by Korkut et al. [2], but the FOTs were stored using a pointer-based data 
structure and the Boltzmann relation was assumed to obtain the electric potential on the E-FOT. In this work, we employ 
the computationally efficient linearized Morton-Z ordered C- and E-FOTs to couple the DSMC and PIC modules in CHAOS. 
Even though particles are mapped to two different FOTs every timestep, the use of two FOTs is efficient since the mapping 
procedure has been optimized to use fast bit-wise calculations and locational keys for linearized FOTs [55].

2.2. 2:1 Implementation for E-FOT

Since the electric field computation in PIC requires the solution of elliptic partial differential equations, additional spatial 
constraints are imposed on the E-FOT to achieve an accurate solution. This spatial criterion ensures that all the leaf nodes 
are, at maximum, only one level coarser than the neighboring leaf nodes and is known as the 2:1 balance [41,62]. The 2:1 
constraint has been implemented in many other works that involve solving partial differential equations using multi-grid 
approaches [41,44,45,63], as well as using iterative procedures to ensure ease of flux calculations at the interface between 
cells at different refinement levels [47,64]. The implementation of the 2:1 constraint is illustrated using two E-quadtrees 
shown in Fig. 2, where trees 0 and 1 are constructed by processors 0 and 1, respectively. In CHAOS, the 2:1 balance con-
dition is enforced by comparing the leaf level of each leaf node with its face neighbor’s leaf level. Face neighbors are the 
neighboring leaf nodes that share a common interface. It can be observed in Fig. 2 that the leaf node 11 in tree 1 has three 
bottom face neighbors, namely 6, 8, and 10, and they do not satisfy the 2:1 balance because leaf node 11 is two levels 
coarser than its smallest face neighbors, leaf nodes 6 and 8. Similarly, leaf node 2 of quadtree 0, contained in Processor 0, 
is two levels coarser than its smallest right face neighbors, 5 and 6, contained in Processor 1. Since the trees, 0 and 1, are 
stored on different processors, the 2:1 constraint is implemented on the E-FOT in two stages, namely, a local and global 
balance stage.

In the local balance stage, each processor imposes the 2:1 restraint on the leaf nodes that belong to the octrees in 
its sub-domain, i.e., processors 0 and 1 independently enforce the 2:1 on the trees 0 and 1, respectively. The first step in 
this stage is to determine the face neighbor leaf nodes and their leaf levels within the same octree. Morton order and the 
locational keys [65] are exploited to find the face neighbors within the same octree, in six directions, namely, left, right, top, 
bottom, front, and back. The code snippet to compute the face neighbors using Morton encoding and locational key [55] is 
given in Appendix A. When comparing the leaf level of face neighbors within the same tree, known as local face neighbors, 
the leaf nodes that do not satisfy the balance constraint are flagged and refined until they are only one level coarser than 
their finest local face neighbor. Therefore, leaf node 11 in quadtree 1 is refined until it is only one level coarser than its 
smallest face neighbors, 6 and 8. The quadtree structure after the local balance stage is completed is shown in Fig. 3(a).
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Fig. 2. A forest of E-quadtrees constructed by Processor 0 and 1, that does not satisfy the 2:1 balance.

Fig. 3. E-quadtree structure generated with 2:1 balance restraint.

But the local 2:1 implementation stage does not ensure that the leaf node 2 in quadtree 0 will satisfy the 2:1 constraint 
with face neighbors 5 and 6 stored on a different processor. Therefore, during the global balance stage, inter-processor MPI 
communication of the neighboring leaf node’s information is implemented. Each processor determines the number of leaf 
nodes at the boundary of its sub-domain, and forms a list of face neighbor leaf IDs that belong to a different processor. 
These face neighbor leaf IDs are also determined using bit-wise Morton encoding and the locational key feature [55,65]. 
If the level difference between any boundary leaf node, e.g., leaf node 2, and its face neighbor from a different processor, 
leaf nodes 5 and 6, is greater than one, then the coarser leaf node is refined until the 2:1 criterion is satisfied. The final 
quadtree structure after the global balance stage is shown in Fig. 3(b). However, the global balance stage, may again lead to 
a level imbalance between the newly refined leaf nodes with local face neighbors within the same tree, the effect of which 
would propagate to leaf nodes in other processors, known as the ripple effect [62]. Therefore, an iterative local-global cycle 
is implemented to ensure that all the leaf nodes throughout the domain satisfy this balance criterion with their respective 
face neighbors on both local and global levels. The number of local-global cycles depends on the variation of local Debye 
length. For this work, a maximum of three such cycles were required to obtain a 2:1 E-FOT.

2.3. Domain decomposition and face neighbor storage

After the C- and E-FOT are constructed, their respective leaf nodes are assigned a computational weight to quantify the 
run-time required to perform the computations. For the DSMC module, since the simulation run-time is most sensitive to 
particle number density, in the absence of immersed bodies [55], the leaf nodes of the C-FOT are assigned weights based 
on their respective number densities and collision frequencies. Since the electric field solver dominates the PIC module and 
the electric potential is evaluated on all the leaf nodes, each E-FOT leaf node is assigned a computational weight of one. 
Finally, the leaf nodes of FOTs are partitioned such that the respective total computational weights of both, the C- and 
the E-FOT, are load balanced across all processors. Since this partitioning is performed at the leaf level, some of the leaf 
nodes may need to be transferred from the processor that they were constructed on to the one they are assigned to for 
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Fig. 4. Domain decomposition of a quadtree for illustration of 3D algorithms.

computations. For example, let us say that the 20 leaf nodes of the final E-FOT, shown earlier in Fig. 3(b), are to be equally 
divided between the two processors, i.e., leaf nodes 0 to 9 and 10 to 19 are assigned to Processors 0 and 1, respectively, 
for PIC computations. But, leaf nodes 7, 8, 9 that belong to tree 1 are stored in Processor 1, and must be communicated to 
Processor 0 during domain decomposition to achieve load balance. A similar leaf node communication among processors 
is performed when the C-FOT is partitioned using the computational weights assigned to its respective leaf nodes. Thus, 
for the plasma plume simulations, the number of total leaf nodes in the C- and E-FOT will be different due to different 
sub-division criteria and length scales, and since the leaf nodes are partitioned among the same processors to achieve load 
balance on their respective FOTs, the sub-domain contained in a processor for the DSMC computations will not overlap 
with the sub-domain for PIC calculations. However, since the collisions on the C-FOT and the electric-field calculations on 
the E-FOT are independent and coupled only through the particles, the overlap of the sub-domains, i.e., the portion of the 
computational domain contained by the processor, for both DSMC and PIC is not necessary. The methodology for partitioning 
the linearized Z-ordered FOT is described in detail in Ref. [55].

The PIC module, unlike DSMC, requires each E-FOT leaf node to store the list of its face neighbor leaf Ids in order to 
determine the potential gradient and the resulting forces that move the charged particles. Therefore, when the leaf nodes 
of the E-FOT are partitioned, their corresponding face neighbor ID list, computed by the 2:1 balance subroutine, is also 
transferred from the processor that constructed the octree to the assigned processor after partitioning. The leaf nodes with 
face neighbors that belong to a different processor are called Z -boundary leaf nodes and their face neighbors are called 
‘ghost’ leaf nodes or ‘ghost’ neighbors. Each processor, Pi , flags the Z -boundary leaf nodes and determines the list of 
processors, P g , which contains the corresponding ghost neighbors. A communication link is set-up between processors that 
share the partitioned boundaries, such that, each processor can transfer the information of the Z -boundary leaf nodes to 
the list of neighboring processors stored as P g , as well as receive information of the ghost neighbors from them. It will 
be shown in Sec. 2.4.2 that this communication link across neighboring processors is used at every iteration by the Poisson 
solver. Since, the boundaries of the sub-domain remain fixed after partitioning, the list of neighboring processors, and the 
list of Z -boundary as well as ghost leaf nodes is not determined every timestep, unless the domain is re-partitioned. For an 
evolving flow, the FOTs are destroyed, re-constructed and re-partitioned periodically, the interval for which typically ranges 
from 100 to 10,000 time-steps depending on the transient characteristics and is a user-input. For this work, the E-FOT is 
re-constructed and re-partitioned every 100 timesteps. In addition, due to the modularized structure of the code, the C- and 
E-FOTs can have different adaptation intervals. After the steady state is achieved, all the computations are performed on the 
last FOTs that are constructed.

Consider a schematic of a two-dimensional Z-ordered E-quadtree shown in Fig. 4 with global Morton Ids. A weight of one 
is assigned to each leaf node, after which the tree is equally partitioned among three processors in this illustration. It can be 
seen that processor 2 has three Z-boundary leaf nodes, 6, 7 and 8, that have ghost face neighbors in a different processor. 
Processor 2 determines that leaf nodes 6 and 7 share the same ghost neighbor on the left, i.e., leaf node 1 from processor 0, 
and that the bottom ghost neighbors of leaf nodes 6 and 8 are 3 and 5, respectively, from processor 1. Processor 2, therefore, 
stores processors 0 and 1 as its neighbors in an array for data transfer. Along with the neighboring processor information, 
the number of ghost neighbors in each neighboring processor is determined, thus setting up the communication link. Also 
the arrays to store the physical values, such as, the potential φghost , of these ghost nodes are allocated. In the PIC module, 
each processor transfers the φ values of the Z-boundary leaf nodes to the respective neighboring processors and receives 
the array of the ghost neighbors φ values using the communication link.

2.4. PIC method in CHAOS

The electric potential, φ, is calculated by solving Poisson’s equation,

∇2φ = − ρ
(1)
εo
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where εo is the permittivity of free space and ρ is the total charge density computed for all leaf nodes of the E-FOT using 
the nearest-grid point (NGP) method [14] and is equal to the difference between number densities of ions, ni , and electrons, 
ne , multiplied by their respective charges as,

ρ = e(Zni − ne). (2)

The induced electric field is obtained by taking the gradient of φ which is then applied as an external force on the charged 
particles in the PIC simulations. As the ion and electron spatial distributions evolve in time, Eqs. (1) and (2) are resolved at 
every time step in the PIC module of CHAOS. The numerical approach used to obtain the electric potential and electric field 
is described in this section.

2.4.1. GPU computation of charge density
To compute the nearest-grid point [14] charge density distribution, the charged particles are mapped to the E-FOT leaf 

nodes. A kernel, equivalent to a subroutine in C++, is launched on each GPU with CUDA threads equal to the number of 
ions and electrons in its sub-domain. Each CUDA thread determines the leaf node for the particle assigned to it, using their 
position coordinates and fast bitwise computations described in our recent work [55]. Since the mapping of a particle is 
independent of other particles, this thread-independent procedure is efficiently parallelized by the multi-core GPU. After 
mapping, if the leaf node that the particle was mapped to, resides in a different GPU’s sub-domain, then the particle data 
is communicated to the destination GPU using MPI-CUDA communication. That is, if particle data in GPU-1 is mapped to a 
leaf node in GPU-2, then the particle data is first transferred from GPU-1 to its host, CPU-1, using cudaMemcpy, followed 
by an MPI communication between CPU-1 and CPU-2, which, in turn, transfers the data to GPU-2 using cudaMemcpy. Note 
that, each CPU or MPI-rank has one GPU device assigned to it. After mapping and particle communication, particles are 
distributed among the processors based on the E-FOT leaf nodes and the number density of ions and electrons for each leaf 
node are computed based on the E-FOT leaf ID of the particles [55]. Finally, each CUDA thread computes the total charge 
density of the leaf node by solving Eq. (2) and all the GPUs concurrently determine the charge density distribution in their 
respective sub-domains.

2.4.2. Parallel implementation of preconditioned conjugate gradient Poisson solvers
The electrostatic Poisson’s equation, given in Eq. (1) is solved on the 2:1 E-FOT using a cell-centered finite volume (FV) 

approach. It is known that the integral form of Eq. (1), upon employing the divergence theorem, gives [1,66],∮
S

∇φ· n̂dS = −
∫
�

ρ

εo
d�, (3)

where, the integral is calculated over the surface S and volume � of the control volume which in this case is the E-FOT 
leaf node. Discretizing the above equation for the ith leaf node of the three-dimensional E-FOT, we obtain,

(k<N f i)∑
k=0

∇φik · dSik = −ρi

εo
dV i, (4)

where, N f i is the number of face neighbors of the ith leaf node, dSik is the face area shared between leaf node i and its kth 
face neighbor, ρi is the leaf centered charge density computed previously, and dV i is the leaf node volume. In a 2:1 octree, 
a leaf node may have a maximum of four face neighbors for each of the six faces, i.e., a maximum of 24 face neighbors 
(maximum value of N f i = 24), unlike a uniform grid cell that can have only one face neighbor for every face. The gradient, 
∇φik , at the interface between leaf node i and its kth face neighbor, leaf node j, is approximated using the central difference 
scheme,

∇φik = φ j(k) − φi

dxi j
, k ∈ {0 − N f i} (5)

where, φi and φ j(k) are the leaf-centered values for leaf node i and its kth face neighbor, leaf node j, respectively, and dxij

is the perpendicular distance between the centroid of leaf node i and j across the shared face. For example, the discretized 
FV equation (4) for leaf node 0 shown in Fig. 4, using Eq. (5) to compute the gradient, is written as(

φ2 − φ0

dx02

)
dS02 +

(
φ3 − φ0

dx03

)
dS03 +

(
φ1 − φ0

dy01

)
dS01 = −ρ0

εo
dV 0 (6)

where, all the φ’s, ρ0, and dV 0 are leaf-centered values of electric potential, charge density, and leaf volume, respectively, 
dx02 and dx03 are the perpendicular x-distance between the centroids of leaf node 0 and its right face neighbors, 2 and 
3, respectively, dy01 is the y-distance between the centroids of leaf node 0 and its top face neighbor leaf node 1 and 
dS0 j is the face area shared by leaf node 0 with its respective face neighbor leaf node j. For this example we have as-
sumed that a homogeneous Neumann boundary condition is applied on the domain boundaries adjacent to leaf node 0, i.e., 
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dφDomainBndry = 0. Since the shortest distance between the centroids perpendicular to the shared face, dxij , is equal to the 
average cell length of the neighboring leaf nodes for a 2:1 octree, the leaf level information of the respective leaf nodes 
is used for the computation. This implementation is simple and allows for optimized memory usage on the GPU, because 
storing the integer array of leaf levels is more efficient compared to storing three arrays of doubles corresponding to the x, 
y, and z coordinates of their centroids, to compute the distance. Grouping the coefficients of φ0 and its face neighbors, φ j , 
we get,

A00φ0 −
j<N f 0∑

j=0

(A0 jφ j) = ρ

εo
dV 0 (7)

where, A00 = ∑ j<N f 0
j=0 (A0 j) and A0 j form the non-zero coefficients of row 0 for the N × N sparse matrix, where, N is the 

total number of leaf nodes in the domain, as shown in the matrix A of Eq. (8) for the quadtree example in Fig. 4.

(8)

Note that each GPU computes the coefficients of the rows corresponding to the leaf nodes in its sub-domain, as illustrated 
in Eq. (8). However, the computation of some coefficients, highlighted with square parentheses in the matrix of Eq. (8), 
requires leaf level information of corresponding ghost neighbors, which were identified during the partitioning step. That is, 
coefficient A03 for leaf node 0 in row 0, depends on the leaf level information of its ghost neighbor, leaf node 3 that 
belongs to Processor 1 as shown in Fig. 4. Therefore, the leaf levels of the Z -boundary leaf nodes are communicated 
among neighboring processors using the communication link discussed previously in Sec. 2.3. Additionally, each GPU stores 
only the non-zero elements of the sub-matrix it contains using the compressed sparse row format, and the matrix is not 
determined every timestep but only when the E-FOT is constructed or re-constructed. The partial differential equation (1)
is thus transformed into a system of linear equations of the form Ax = b as shown in Eq. (8) for the 2:1 E-FOT. The 
vector b is obtained by computing the RHS of Eq. (4) for all the leaf nodes and including the known boundary conditions, 
depending on the problem set-up. It can be seen from Eq. (8) that the matrix is sparse and by construction, it is also 
symmetric, i.e., (Aij = A ji), and has positive values for the diagonal elements. Such a symmetric, positive definite matrix 
can be inverted using a number of iterative numerical recipes. The implementation and communication steps involved in 
the steepest descent method used in this work is discussed next.

The preconditioned conjugate gradient method (PCG) [67,68] is employed in this work, where to obtain a converged 
solution with fewer iterations, the algebraic equation, Ax = b is multiplied with a preconditioner, M−1, and the modified 
equation M−1 Ax = M−1b is solved. In CHAOS, we use the diagonal elements of the matrix as a preconditioner, Diag(A) = M , 
which is simple to implement and parallelize using GPUs. The specific MPI-CUDA communications employed in CHAOS and 
parallelization strategies implemented for the iterative PCG solver are given in Algorithm 1 [67,68]. The GPUs execute the 
PCG algorithm on their respective sub-domains, by employing large numbers of CUDA threads that concurrently evaluate 
the equations for a given leaf node, i. The two most important operations involved in Algorithm 1 are sparse-matrix vector 
multiplication (SPMV) and dot products of vectors. It can be seen that SPMV is executed in steps 4, 5, 12, and 18 of the 
algorithm, but each GPU stores only a part of the matrix and the vector. For example consider the evaluation of SPMV, Aφ, 
for the system of equations in Eq. (8) for the quadtree example in Fig. 4. GPU 0 computes the product sum, 

∑ j<N f i

j=0 Aijφ j , 
where the subscript i corresponds to the leaf nodes 0–2 in its sub-domain, and the subscript j are their respective face 
neighbors. This summation involves computing the product of the matrix coefficient with the φ value of a ghost neighbor 
that is stored in the neighboring processor, i.e., to compute the summation for leaf node 0, the product A03 ∗ φ3 requires 
the φ3 value of ghost neighbor, leaf node 3. To obtain information from these ghost leaf nodes, the φghost values of the 
identified ghost neighbors are communicated between neighboring processors before SPMV using the communication link 
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Algorithm 1 Conjugate gradient with diagonal preconditioner on multiple GPUs.
1: procedure Initialization:

2: Initialize φ for all leaf nodes

3: Communication φghost : GPUsource
CudaMemcpy−−−−−−−−→CPUsource

M P I−−−→CPUdest
CudaMemcpy−−−−−−−−→GPUdest

4: Kernel to Compute : r = b − Aφ ... (Aφ is SPMV)
5: Kernel to Compute : d = Minv · r, where, M = Diag(A) ... (Minv · r is SPMV)

6: Async. Communication of dghost : GPUsource
CudaMemcpy−−−−−−−−→CPUsource

M P I−−−→CPUdest
CudaMemcpy−−−−−−−−→GPUdest

7: Compute local δnew = r · d .. (Dot product of doubles local using cublas and global sum from MPI_AllReduce)
8: Initialize δo = δnew

9: end procedure
10: procedure Iterative Solver

11: while i < imax && δnew > ε2δo : do
12: Kernel to Compute : q = Ad (q for local leaf nodes, using SPMV for Ad)
13: Compute γ = d · q (locally on the GPU using cublasDdot, then use MPI_AllReduce to obtain global sum)
14: Compute α = δnew/γ on the CPU
15: Kernel to Update φ = φ + αd

16: Async Comm : φghost : GPUsource
CudaMemcpy−−−−−−−−→CPUsource

M P I−−−→CPUdest
CudaMemcpy−−−−−−−−→GPUdest

17: Kernel to update residual : r = r − αq
18: Kernel to Compute S = Minv r, where, Minv = Diag(A) (.. SPMV)
19: Update δold = δnew on the CPU
20: Compute δnew = r · S , .. ( dot product using cublasDdot + MPI_AllReduce )
21: Compute β = δnew/δold on the CPU

22: Async. Communication of dghost : GPUsource
CudaMemcpy−−−−−−−−→CPUsource

M P I−−−→CPUdest
CudaMemcpy−−−−−−−−→GPUdest

23: Update iteration counter : i = i + 1
24: end while
25: end procedure

set-up during domain decomposition. In this communication, first, each GPU transfers its array of Z-boundary φ values 
to the host CPU, using cudaMemcpy. The CPUs communicate the respective values of the φZbndry array required by the 
neighboring processors using non-blocking point-to-point MPI communications, and the receiver CPU stores these values in 
the φghost array. Finally, the CPUs communicate the φghost values received from all the neighboring processors to its GPU.

The computation of vector dot products, required in steps 7, 13, and 20 of Algorithm 1, is performed in two steps since 
each GPU contains only a part of the vectors. In the first step, each GPU computes the partial dot product of the elements 
corresponding to the Np leaf nodes in its sub-domain. An in-built function, cublasDdot , available in the optimized linear 
algebraic package cublas, is employed to compute this partial sum that is finally stored on the host CPU. Finally, all the 
partial sums stored on the CPUs are added using the M P I_AllReduce function, to obtain the final scalar value on all the 
processors. Consider a dot product, g = b · b, where the b vector is partitioned among three GPUs as shown in Eq. (8). All 
the GPUs simultaneously compute the partial sum, gloc = ∑i<N p

i=0 bi · bi for all the Np leaf nodes in their sub-domains, and 
store this value on the respective host CPU. In the next step, the partial sums, gloc , from all the CPUs are added to obtain 
g , which is available on all the CPUs. The code-snippet for the partial and global sum values using MPI-CUDA is shown in 
Appendix B. The while loop in the algorithm is executed until a converged value for the electric potential is obtained, and 
the convergence criteria used for the plasma plume calculations are such that, δnew < (1 × 10−7δo), where δ is the residual 
of the preconditioned equation, M−1 Ax = M−1b, computed in steps 8 and 20 of Algorithm 1. For the simulations presented 
in Sec. 5, typically 10 to 40 iterations were required for the PCG solver to satisfy the above criteria, where, the value of δo

ranged from 0.01 to 1 as the plume simulations evolved.
The electric field at the leaf-node center is obtained such that each CUDA thread independently and simultaneously 

computes the average potential gradient, using Eq. (5), for the corresponding leaf node assigned to it. For example, the 
electric field in the x-direction, Ex , for leaf node 2 in the 2:1 quadtree shown in Fig. 4 is computed as follows,

Ex = (∇φ20 + ∇φ24)/2 (9)

where, ∇φ20 and ∇φ24 are obtained by using Eq. (5). This equation reduces to the central differencing scheme for a uniform 
grid approach. As discussed earlier, the gradient computation requires the value of the face neighbor potential, which are 
already stored on the GPU during the iterative Poisson solver step. In addition, even the φghost values are communicated 
during the iterative PCG algorithm. Therefore no additional communications are required for the computation of the electric 
field. The force for all the charged particles is obtained based on the cell-centered electric field value of the leaf node that it 
belongs to. Finally, the particle positions and velocities are updated using the leap-frog scheme [14,69] and the new charge 
distribution at the next timestep is computed.

3. PIC module validation, error analysis, and performance studies

To analyze the effect of the nearest-grid point (NGP) charge distribution and the 2:1 octree grid in CHAOS we perform 
four validation cases, similar to those performed by Duras et al. [70], and Averkin et al. [71]. The solutions from the octree-
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Fig. 5. Effect of uniform versus 2:1 octree on electron acceleration and translational energy.

based PIC module are compared with a uniform grid, obtained by enforcing a 1:1 octree grid, as well as the analytical 
solutions.

3.1. Comparison of single particle trajectory on a 2:1 octree and uniform grid

In the first case, a single electron is initialized at the center of a (0.4 × 0.4 × 0.4) m domain with an initial velocity of 
10,000 m/s in the z direction and zero velocity in the x and y directions. A Dirichlet boundary condition of φ = 0 and 1 V 
is implemented at the z = 0 m and z = 0.4 m boundaries, respectively, and a homogeneous Neumann boundary condition 
is implemented at the other boundaries. To analyze the effect of grid-refinement on the electron trajectory, we perform 
two simulations, one with a uniform 1:1 octree where all the leaf nodes are at the same level with �x = 3.125 mm, and 
the second simulation with a 2:1 octree where, refinement is enforced from z = 0.25 to z = 0.3 m such that the leaf node 
size in this region is �x/2, i.e., 1.5625 mm. Due to the Dirichlet boundary conditions of 0 and 1 V at the z-boundaries, a 
linear profile is expected for the electric potential, resulting in a constant electric field and acceleration. It is known that 
no self-force errors [70] are generated in a uniform grid approach, however, for an octree approach, a self-force error may 
be expected due to the loss in second-order accuracy of the Poisson solver at the coarse-to-fine and fine-to-coarse interface 
regions, that is, at z = 0.25 to z = 0.3 m for this case.

To analyze the effect of this self-force error on the charged particle trajectory, the acceleration and translational energy 
are recorded as the electron travels from z = 0.2 m to 0.35 m. The values obtained from the 1:1 uniform grid and 2:1 
octree simulation are compared in Figs. 5(a) and 5(b), respectively. In comparison with the uniform grid case, the electron 
acceleration computed from the 2:1 octree grid is found to increase at z = 0.25 m and decrease at z = 0.3 m as a result 
of the change in the refinement level. However, the relative difference in the electron acceleration is less than 0.005% 
throughout the trajectory. Similarly, the electron translational energy computed from the uniform and 2:1 octree agree 
within 5 × 10−4% as shown in Fig. 5(b). From this study we conclude that, even though the electron acceleration undergoes 
a change due to self-force at the interface between two levels of refinement, the relative difference in electron acceleration 
and translational energy is less than 0.1% and does not significantly influence the accuracy of the PIC simulation compared 
to the uniform grid.

3.2. Rate of convergence studies

In the second test case, we perform simulations with a known stationary charge density variation to test the convergence 
rate of the electric potential and field with decrease in the cell size. For this study we initialize a (0.1 ×0.1 ×0.1) m domain 
with a linearly varying ion number density, such that, ni = no(z/L), where, ni is the ion number density at a given location 
(x, y, z), no = 1 × 1013/m3, and L is the size of the cube, i.e., 0.1 m in this case. A Dirichlet boundary condition of φ = 0 V 
is implemented at z = 0 and 0.1 m boundaries and a homogeneous Neumann boundary condition is implemented at the 
remaining boundaries. The analytical expression for the static potential in the z-direction for the stationary charge density 
variation and boundary conditions is

φ = −qno

6Lεo
(z3 − zL2). (10a)

The electric field is zero at z = L/
√

3, where the potential is maximum and is equal to φmax = 116.12 V. Four static 
simulations are performed with a 1:1 uniform grid by decreasing the cell size by a factor of two in each case from 8�x
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Fig. 6. Comparison of electric potential with the analytical solutions for a linearly varying ion charge density distribution.

to �x = 0.78125 mm. For comparison, the same test case is also performed with a 2:1 octree, with a leaf node size of 
0.3906 mm, which is much smaller than the local Debye length near the boundaries to accurately capture the potential 
gradient. Everywhere else within the domain, the leaf node size is less than the local Debye length, computed assuming an 
ion temperature of 2 eV, and all the simulations are performed with 88.7 million ion particles. The variation of potential 
on the y–z slice at the center of the domain, obtained from the octree simulation is shown in Fig. 6(a) along with the 2:1 
octree structure. The φ in the z-direction, extracted along a line passing through the center of the y–z slice, is compared 
with that obtained from the uniform grid simulations in Fig. 6(b). It can be seen that as the cell size is decreased for 
the uniform grid case, the solution obtained approaches the analytical solution. Since the octree structure inherently has a 
smaller leaf node size near the boundaries, it can accurately capture the large field gradients at the boundary as well as the 
potential variation within the domain, as shown by the good agreement with the analytical solutions.

To verify the order of accuracy for the potential and electric field solver implemented in CHAOS, we first compute the 
L2-norm of the relative error in potential and electric field, defined as e2( fh) = ‖ fh− fe‖2‖ fe‖2

, where fh is the solution, f , 
obtained with a grid size of h, and, fe is the exact analytical solution. The L2-norm of a function, f , is given as ‖ f ‖2 =√

(1/N)
∑i=N

i=1 f 2
i , where N is the total grid points [72]. The decrease in the L2-norm of the relative error in φ(x, y, z) and 

Ez with decrease in the cell size is shown in Fig. 7(a), where the error for the 2:1 octree grid case is highlighted. It can 
be seen that the e2(Ez) is almost equal for the 1:1 case with �x = 0.78125 mm and the 2:1 octree case, meaning that 
the electric field is converged. The rate of convergence, p, is obtained by evaluating p = ln(e2( f2h)−e2( fh))

ln 2 , where e2( f2h)

and e2( fh) denote the L2-norm of the relative error in f for a grid with cell size of 2h and h, respectively. The rate of 
convergence for the potential and electric field is shown in Fig. 7(b), where it can be seen that the order of accuracy for 
φ is greater than 1, which is typical for a second-order accurate method with first-order Neumann boundary conditions 
[72], and for Ez the order of accuracy is greater than unity for all the cases with 1:1 uniform grid. Since the electric field 
computed with the smallest refined grid and the octree are the same, as observed from the same e(Ez) in Fig. 7(a), the 
order of accuracy for the electric field decreases to 0.1, showing that a converged electric field is computed from the 2:1 
octree structure. Thus, we conclude from this study that the rate of convergence obtained for the potential and electric field 
is between 1 and 2.

3.3. Momentum and energy conservation studies

In the third case, we study the effect of the 2:1 octree and the particle movement algorithm on the conservation of 
momentum and energy, similar to the studies performed by Averkin et al. [71]. Ions are initialized in a (0.1 × 0.1 × 0.1) m 
domain with a linearly varying number density of ni = no

(
1 − 2

L | L
2 − z|), where, L is the size of the cubic domain, and 

no = 1 × 1013 m−3. The boundary condition is similar to that used for the rate of convergence studies discussed in Sec. 3.2. 
An electron particle with zero initial velocity is placed at the center of the domain, (0.05, 0.05, 0.049), and due to the 
potential induced by the stationary ion charge density distribution, the electron will be trapped and oscillate within the 
domain. As time progresses, if the oscillations in its momentum and energy have equal amplitude, then these properties 
are conserved. The plasma frequency for this case is ωpe = 1.785 × 108 rad/s, assuming an electron temperature of 2 eV, 
and to accurately capture the electron oscillations we use a timestep of �t = 0.05ω−1

pe = 0.28 ns. A 2:1 octree, similar to 
that constructed for the convergence studies, is used to discretize the domain, and the explicit leap-frog particle integration 
scheme is implemented [14]. The computational domain consists of 24 million ion particles, 0.64 million leaf nodes with 
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Fig. 7. Effect of cell size on L2-norm of the relative error and rate of convergence of φ and Ez .

Fig. 8. Variation in electron z-momentum and translational energy with time showing conservation.

the smallest leaf node of 0.3 mm, and coarsest leaf node of size 1.25 mm, and the simulation is performed using 16 GPUs. 
The z-velocity and translational energy of the electron up to 0.5 μs obtained from the simulation are shown in Figs. 8(a) 
and 8(b), respectively. It can be seen that the z-velocity and translational energy of the electron has equal amplitude, 
demonstrating that the momentum and translational energy are conserved in the simulation.

Numerical heating studies are also performed similar to Averkin et al. [71] for which the electrons and ions are initialized 
in a (0.1 ×0.1 ×0.1) m cubic domain with number densities of ni = ne = 1 ×1013/m3, and a Maxwellian velocity distribution 
with Ti = Te = 2 eV. A Dirichlet boundary condition of 0 V is imposed on all boundaries of the domain and periodic 
boundary condition for the particles is implemented, with a timestep of 2.8 × 10−10 s. Two test cases are performed, 
one with a 1:1 uniform grid of �x = 0.3125 mm and the second with a 2:1 octree where a refinement is imposed for 
z >0.05 m, and at least 100 particles per cell were used for both the cases. The average energy of the system was conserved 
up to tωpe = 10,000 and found to increase by 0.008% compared to the initial energy of (3/2)kb T in both the cases.

3.4. Comparison of computational efficiency of a 2:1 octree and uniform grid plume simulation

Finally, to test the computational accuracy and efficiency for cases with large density variations, we perform a colli-
sionless mesothermal plume simulation using co-located xenon ion and electron sources, described as case 2 in Sec. 4, 
for a 2:1 octree and a 1:1 uniform grid. The domain size for this verification case was limited to (0.4 × 0.4 × 0.4) m to 
reduce the computational cost inherent to uniform grid computations. The plasma source of radius 0.625 m is located at 
(0.2, 0.2, 0.0) m and all the remaining input parameters are the same as that mentioned in Table 2 for case 2. Since the 
2:1 octree satisfies the local Debye length, the smallest cell size is 1.5625 mm within the plume and increases to 6.25 mm 
beyond the beam-front, while for the uniform grid, all the cell sizes are equal to 1.5625 mm. The two simulations are per-
formed up to tωpeo = 100, i.e., 560 ns, using 16 Tesla K20 GPUs, and to avoid statistical noise involved in the instantaneous 
results, we sample the flow-field macroparameters up to 560 ns, or 2,000 timesteps. Since sampling requires a static grid, 
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Fig. 9. Comparison of sampled potential and electric field computed using the uniform and 2:1 octree along the plume axis.

Fig. 10. Strong scaling studies for case 2.

we construct an initial 2:1 octree that satisfies the Debye length criteria up to 560 ns and turn off the dynamic adaptation. 
The comparison of the sampled potential and z-electric field along the plume axis obtained using the 2:1 octree and the 
uniform grid are shown in Figs. 9(a) and 9(b), respectively. It can be seen that the sampled macroparameters from the octree 
and the uniform grid simulations agree within 2% and the maximum relative error in electric field is 1.2% at z = 0.07 m, 
where the octree level undergoes a change in refinement. Since the octree is refined only in the regions with smaller Debye 
length, the total number of leaf nodes required for the simulation is 1.085 million, compared to the 16.77 million cells 
required by the uniform grid simulation. For the initial 560 ns of the plume evolution with 17 million total particles in 
both simulations, the run-time of the octree simulation is found to be 8 minutes, which is nearly 50 times faster than the 
uniform grid simulation that required 7.13 hours. However, it must be noted that the number of leaf nodes in the octree 
simulation will dynamically increase with the advancement of the plume, which in turn will increase the computational 
time. Nevertheless, compared to the octree, the three-dimensional uniform grid PIC simulations will still be ten times more 
expensive.

3.5. Scaling studies

Strong scaling studies were performed on a collisionless mesothermal xenon plume, defined as case 2 in Sec. 4, by 
varying the number of GPUs used to simulate the plume from 16 to 128. The case 2 input parameters, given in Table 2 of 
Sec. 4, are used for all the scaling simulations in order to keep the problem size identical. Each leaf node was assigned a 
computational weight of unity, i.e., the leaf nodes of the forest were equally divided among the GPUs during the simulation. 
The scaling simulations were performed on the XStream supercomputer which contains eight Nvidia Tesla K80 GPUs per 
node and the run-time was obtained by performing the simulation from 18,000 to 20,000 timesteps, when the plume has 
sufficient particles in the domain to test the load balancing.

Fig. 10 compares the speed-up from CHAOS with the ideal scaling, which is computed using the 128 GPU run-time as 
the baseline. It can be seen that CHAOS scales efficiently with increase in the number of GPUs. Since the leaf nodes are 
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Table 1
Profiling studies.

Subroutine Percentage time

Particle mapping + MPI-CUDA particle communication 40%
Poisson solver 20%
Ghost leaf node communication in the Poisson solver 20%
Boundary condition and particle movement 7.5%
Electric field and acceleration 7%
Re-partitioning and miscellaneous 5.5%

Fig. 11. Simulation set-up for the mesothermal plasma plume cases with domain size of (1.6 × 1.6 × 1.6) m. A Dirichlet boundary condition of φ = 0 V 
is implemented in the highlighted orange region at the inlet plane, surrounding the radial sources. At all other boundaries and within the circular source 
region, a homogeneous Neumann boundary conditions is applied. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

equally divided and the plume is confined for case 2, the partitioning is not truly load balanced especially for simulations 
with fewer GPUs. That is, the leaf nodes in the plume region contained more particles compared to the leaf nodes in the 
surrounding region and therefore assigning equal weight to the leaf nodes would not distribute the computational weight 
equally. It can be seen that this load imbalance is more pronounced for the 16 and 32 GPU simulations. However, when 
the same problem is divided among more processors, the core-region of the plume is equally distributed, and therefore, the 
total computational weight is load balanced even though the varying particle density is not accounted for while assigning 
computational weight to the leaf nodes. The scaling increases to near-ideal with the increase in the number of GPUs.

Profiling studies were performed for the 128-GPU case using the TAU-profiler and the relative contribution of each 
subroutine towards the computational cost is shown in Table 1. For 2,000 timesteps with 12.5 million leaf nodes and 80 
particles per leaf node within the plume, the run-time was approximately 11 minutes, which is at least an order of mag-
nitude faster than the two-dimensional formulation with a uniform grid that employs CPUs [58]. As seen from Table 1, the 
particle sorting and communication sub-routine requires 40% of the total computational time. However, within this sub-
routine the relative time required for mapping particles to leaf nodes is negligible due to the fast bit-wise Morton encoding 
method, and the main contribution to the 40% computational cost is due to the MPI-CUDA particle communication and sort-
ing of arrays based on the leaf node ID. The pre-conditioned conjugate gradient method used to solve Poisson’s equation 
requires 20% of the total time, but the communication of the ghost neighbor information, performed every iteration, requires 
20% due to the use of M P I_W AI T command, that waits until all the non-blocking M P I_Isend and M P I_Irecv communi-
cations are performed. The particle movement and boundary condition subroutines require 7% each, and the re-partitioning 
subroutine requires 5% of the total computational cost.

4. Simulation set-up and case description

Having validated the PIC module by performing canonical test cases and analyzing its computational performance, we 
now study the effects of hollow cathode location on the electron kinetics using two types of electron source configura-
tions. In the first configuration, the electron source is co-located with the ion source, as shown in Fig. 11(a), while in the 
second configuration, the electron source is shifted above the thruster exit, in the y-direction, as shown in Fig. 11(b). To 
systematically analyze the effect of ion mass and electron source location, three cases are performed. In case 1, the ions 
are introduced with mass equal to that of the protons and the electron source is co-located with the ion source, similar to 
the mesothermal plume simulations performed by Wang et al. [58] and Hu et al. [59,60]. For case 2, heavier xenon ions 
are introduced from the co-located ion and electron source, shown in Fig. 11(a), to understand the effect of using a higher 
ion mass. Finally, case 3 is a realistic simulation, with the electron source shifted above the xenon ion source using the 
configuration set-up shown in Fig. 11(b). Since collisions are not required to model a mesothermal plasma plume [58], the 
DSMC module in CHAOS is not executed.
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Table 2
Parameters for mesothermal plasma plume simulationsa.

Cases 1 – Proton plasma 
co-located e− source

2 – Xenon plasma 
co-located e− source

3 – Xenon plasma 
shifted e− source

nio (m−3) 4.0 × 1013 4.0 × 1013 1.0 × 1013

mi /me 1836 239,669.5 239,669.5
ωpio rad/s 8.33 × 106 7.295 × 105 7.295 × 105

No. of particles at t f inal
b 164.9 million 165.1 million 64.5 million

Total leaf nodes at t f inal
b 7.09 million 4.45 million 1.8 million

a neo = 1.0 × 1013/m3, ωpeo = 1.78 × 108 rad/s, vteo = 592,892 m/s, Teo = 2 eV = 23,210 K, domain size is (1.6 × 1.6 × 1.6) m, Tio = 0.01Teo , ρo = eneo , 
and vibeam = 30,000 m/s.

b t f inal = 3000ω−1
peo = 16.8 μs.

The initial input parameters for the PIC simulations of cases 1 to 3 are given in Table 2. To facilitate qualitative compar-
ison of the three-dimensional plume characteristics with the 2-D simulations performed by Wang et al. [58] and Hu et al. 
[59,60], the ratio of initial ion temperature, Tio , to initial electron temperature, Teo , used in all the cases is 0.01. For all the 
cases, electrons are initialized with a temperature of Teo = 2 eV and an initial number density, neo , of 1.0 × 1013/m3. These 
selected values for Teo and neo result in an initial Debye length, λdo = 3.32 × 10−3 m and initial electron plasma frequency, 
ωpeo = 1.78 × 108 rad/s. The beam velocity, vibeam , for cases 1, 2, and 3, is taken to be 0.05vteo [59], where vteo is the initial 
thermal velocity of the electrons corresponding to Teo . The ratio of initial ion to electron number densities, nio/neo = 4, is 
such that the respective current densities are equal at the co-located source [58] for cases 1 and 2. For the shifted electron 
source in case 3, the ratio of nio/neo is initially equal to unity, such that the charge density at the respective sources are 
equal. The radius, R , of the ion and electron sources in both the configurations, shown in Fig. 11, is equal to 18.5λdo , i.e., 
0.0625 m, representative of real thruster devices [1], and the size of the three-dimensional domain is chosen to be equal 
to 500λdo to avoid boundary-effects [58]. For all three cases, the ion source center is located at (0.8, 0.8, 0.0) m, and only 
for case 3, the electron source is centered at (0.8, 0.925, 0.0) with radius equal to 0.0625 m, which is shifted from the ion 
source center by one diameter length in the y-direction.

The simulations are performed for a duration of tωpeo = 3000, which is equal to 16.8 μs, in order to resolve the electron 
time scales [58]. Due to the difference in the ion mass, the ion plasma period at the end of the simulation for case 1 is 
tωpio = 140, while for cases 2 and 3, it is tωpio = 12.25. The plasma time scales for case 1 are similar to the mesothermal 
plasma simulations of Hu et al. [60]. A uniform timestep resolution of �t = 2.8 ×10−10 s is used for both ions and electrons 
in all the cases, such that, �t × ωpeo = 0.05 [58]. At every timestep, ions are emitted with a Maxwellian distribution 
corresponding to temperature Tio , and a beam velocity, vibeam , along the z-direction. The electrons, however, are introduced 
every timestep with a stationary Maxwellian distribution with temperature Teo , and no bulk component. To model the 
thruster surface surrounding the ion and electron source, a Dirichlet boundary condition with φ = 0 V is applied in the 
region surrounding the sources, as shown by the highlighted orange region in Fig. 11. On all the other boundaries and 
within the circular source region, a homogeneous Neumann boundary condition, dφ/dn = 0, is implemented to model the 
zero electric field for plume expansion into the vacuum of space. An outflow boundary condition is used for the particles, 
wherein, the particles are removed if they cross the computational boundaries. The electric potential, electric field, and the 
resulting acceleration of the charged particles are computed on the E-FOT using the methodology discussed in Sec. 2.

5. Results and discussion

The unsteady evolution of the plume as well as the effect of ion-to-electron mass ratio and electron source location 
on electron kinetics is discussed in the following subsections. To capture the evolving plume, the octree is dynamically 
destroyed and reconstructed every 100 timesteps, such that the leaf node size is less than the local Debye length. Due 
to the higher ion mass, the ion plasma frequency, ωpio for cases 2 and 3 is an order of magnitude lower than that for 
case 1. Even though the simulations are performed for the same electron time period, tωpeo = 3000, the ion plasma time 
periods, tωpio , are different. Our objective, however, is to analyze the plume dynamics and electron kinetics on the electron 
time-scale, such that, the beam-front of both the plumes are at the same location for comparison.

5.1. Plume characteristics and electron kinetics for case 1

The instantaneous macroparameters of the unsteady plume are extracted along the y–z plane passing through the center 
of the domain. The spatial variation of the ion charge density, normalized by the initial charge density, ρo , is shown in 
Fig. 12 for plasma times tωpeo = 200, 600, 1500, and 3000. With the progression of time, the leading edge of the ion beam, 
or the beam-front, advances in the streamwise direction. The beam-front at tωpeo = 200, 600, 1500, and 3000 is located at 
z = 0.06, 0.16, 0.32, and 0.45 m, respectively, as shown by the dotted line in Figs. 12(a) to 12(d). The extent of the ion beam, 
from the thruster exit to the beam-front, can be divided into two regions, namely, the core region where ρi > 2ρo , and the 
front region, where the ion charge density gradually decreases from 2ρo to 0.2ρo at the beam-front. At tωpeo = 600 and 
1500, the core region extends from the thruster exit to z = 0.1 and 0.2 m, respectively, which is approximately two-thirds 
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Fig. 12. Transient ion charge density for case 1 along the y–z plane extracted at the center of the domain, normalized by ρo . Dashed line indicates the 
notional location of the beam-front.

of the beam-front distance of 0.16 and 0.32 m, as shown in Figs. 12(b) and 12(c), respectively. Note that, in the absence 
of acceleration, the beam-front would be at z = tvibeam = 0.1011 m, instead of 0.16 m. This indicates that the average ion 
velocity may be higher than the initial beam velocity in the front region of the ion beam. At tωpeo = 3000, the ion plume 
expands further and causes the ion charge density to decrease, as shown in Fig. 12(d). As a result, the fraction of the 
core-region is now about half the extent of the beam, unlike the two-third fraction observed at previous times.

Similarly, the evolution of the electron charge density, normalized by ρo , is shown in Fig. 13 at plasma times tωpeo = 200, 
600, 1500, and 3000. At the outset, because the electrons are emitted with a high thermal velocity they overshoot the 
ion beam, resulting in a net positive charge within the plume. The electrons introduced in subsequent timesteps are then 
electrostatically trapped by the positively charged plume indicated by the increase in the electron number density within the 
plume compared to its initial value of ρo . This electrostatic coupling between the electrons and ions forces the electrons to 
collectively travel with the ion beam, as observed from the similarity in the ion and electron charge density variations shown 
in Figs. 12 and 13, respectively. In particular, from Figs. 13(a)–13(c), we observe that the electron charge density core region, 
with ρe < −2ρo , extends up to two-thirds of the beam, similar to that observed for the ion charge density distribution. At 
tωpeo = 3000, shown in Fig. 13(d), the magnitude of the electron charge density decreases beyond z = 0.22 m, which is 
half the distance to the beam-front at z = 0.45 m, similar to the ion charge density variation shown earlier in Fig. 12(d), 
demonstrating that the electrons collectively travel with the ion beam. In addition, a small number of electrons with higher 
thermal velocity component over-shoot the beam-front, thereby exerting an attractive force on the ions, causing the ion 
particles at the beam-front to accelerate further and move with streamwise velocity higher than the initial vibeam .

The spatial variation of electric potential, φ, at plasma times tωpeo = 200 and 3000 is shown in Figs. 14(a) and 14(b), 
respectively. The equivalence in the ion and electron charge densities due to electrostatic coupling within the beam tends to 
create a quasi-neutral plume with potential consistently within the range of 0 to 1 V potential inside the plume core region 
and φ = −2 V at the beam-front and radial edges of the plume. Such a quasi-neutral plume was also computed by Wang 
et al. [58,59], using a uniform grid approach for 2D mesothermal proton plasma simulations with a co-located electron–ion 
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Fig. 13. Transient electron charge density for case 1 along the y–z plane extracted at the center of the domain, normalized by eneo .

Fig. 14. Spatial distribution of electric potential along the y–z plane, extracted at the center of the domain.

source. The potential in the region surrounding the ion source is 0 V due to the Dirichlet boundary condition implemented 
here, as discussed previously in Sec. 4. Outside of the plume, in the far-field, the potential decreases to −6 V near the 
computational boundary at tωpeo = 3000 or t = 16.8 μs, caused by the electrons that have escaped from the trapping due 
to their higher thermal velocity.
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Fig. 15. Spatial distribution of streamwise ion velocity normalized by the initial beam velocity, vibeam = 30,000 m/s, along the y–z plane at the center of 
the domain. The dotted line indicates the location of the ion beam-front.

The instantaneous streamwise ion velocity, wion , normalized by the initial beam velocity of vibeam = 30,000 m/s, for 
plasma times tωpeo = 200, 600, 1500, and 3000 are shown in Figs. 15(a) to 15(d), respectively, along with an evolving 2:1 
octree structure. The dynamic reconstruction and re-partitioning of the E-FOT allows for accurately capturing the evolving 
local Debye length variations, efficiently satisfying the numerical criteria at all time instances. The smallest leaf node size 
is 1.5625 mm at the core of the plume, and in the far-field, the leaf node size increases to 0.25 m. As inferred from the 
ion charge density distribution, the normalized ion velocity within the core region of the plume, with maximum leaf node 
refinement, is close to one, and the ion velocity increases to 1.8vibeam at the beam-front, as shown in Figs. 15(b) to 15(d). 
Due to the electrostatic attractive force exerted by the high thermal velocity electrons that overshoot the beam-front, some 
ions escape from the plume with velocity equal to 2.5vibeam . Note that, the charge density of these accelerated ions in the 
region downstream of the beam-front is found to be much less that 0.1ρo , as shown previously in Fig. 12.

The instantaneous electron, ion, and total charge distributions, extracted along the center-line (0.8, 0.8, z) of the y–z
plane, at plasma time tωpeo = 3000, normalized by ρo , are shown in Fig. 16(a). The ion and electron charge density distri-
butions along the center-line are equal and opposite, suggesting that the plume has achieved quasi-neutrality. This is also 
supported by the total charge distribution that fluctuates about neutrality along the axis of the plume. Since the co-located 
proton plume undergoes expansion, as seen from the ion charge distribution in Fig. 12(d), the magnitude of the ion charge 
density decreases from the initial charge density of 4ρo near the thruster exit to 0.2ρo at the beam-front at z = 0.45 m. 
Corresponding to the quasi-neutral charge density variation, the electric potential, shown in Fig. 16(b) is found to be close 
to zero at the thruster exit, and decreases to −2 V at the beam-front located at z = 0.45 m. The dip in the potential from 
the thruster exit to z = 0.12 m is due to the entrapment of electrons in the ion beam.

The electron kinetic behavior is analyzed by sampling the electron velocity distribution functions (EVDF) at locations 
z = 0.005, 0.1, and 0.4 m, within 0.05 m radius from the plume-axis (0.8, 0.8, z), for a plasma time of tωpeo = 3000. In 
Fig. 17(a), we compare the y-EVDF, ve/vteo , at z = 0.1 and 0.4 m with the analytical Maxwell Boltzmann (MB) distributions. 
The analytical MB distributions are computed for a Te and velocity shift to generate a distribution similar to that of the 
sampled distributions. The sampled y-EVDF at z = 0.1 and 0.4 m, are found to agree well with the MB distributions for 
Tey = 0.8 and 0.32 eV, respectively. A drop in Tex and Tey , the respective x- and y-component of electron temperature, is 
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Fig. 16. Variation of charge distribution and electric potential along the plume center-line, (0.8,0.8, z), at plasma time tωpeo = 3000.

Fig. 17. Comparison of case 1 electron velocity distribution sampled from the simulation (the solid lines), at plasma time tωpeo = 3000, with the analytical 
distribution (dotted symbols), at locations z = 0.005, 0.1, and 0.4 m. The temperature used to obtain the analytical distribution is specified in the legend.

observed downstream from the electron source due to the plume expansion. Note that, the x- and y-EVDF were found to 
be equal at all the sampled locations, which is a consequence of the axial symmetry of the plume. However, the z-EVDF 
were not equal to the cross-stream velocity distributions.

The variation in the streamwise temperature, Tez , and bulk velocity, we , from the thruster exit to the beam-front is 
analyzed by comparing the z-EVDF shown in Figs. 17(b) and 17(c). Near the thruster exit, at z = 0.005 m, the electrons 
that were emitted with zero bulk velocity undergo acceleration resulting in an average we = 60 km/s, as indicated by the 
MB peak value of we/vteo = 0.1, shown in Fig. 17(b). This transition from the initial stationary EVDF to an accelerated 
EVDF results in a kink at the peak of the z-EVDF, which further indicates that the sampled distribution near the thruster 
exit is not strictly Maxwellian. At z = 0.1 m, however, the average we decreases to 1 km/s, i.e., we/vteo = 0.0018, and 
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Fig. 18. Transient ion charge density variation, ρi , normalized by the initial charge density, ρo . The dotted line shows the location of the ion beam-front.

agrees well with an MB distribution corresponding to 1.05 eV, as shown in Fig. 17(b). The electrons accelerated at the 
thruster-exit are trapped at z = 0.1 m by the ion beam, causing some of the electrons to reverse their direction which in 
turn decreases the net bulk velocity to 1 km/s, as shown by the peak value in Fig. 17(b). This electron trapping indicated 
by the decrease in bulk velocity is consistent with the dip in the potential observed previously at z = 0.1 m in Fig. 16(b). 
Near the beam-front, at z = 0.4 m, the sampled z-EVDF is in close agreement with the MB distribution at Tez = 0.75 eV, 
but it has a secondary peak at we/vteo = −1, as shown in Fig. 17(c). This enhanced tail in the negative direction is due to 
the electrostatic attraction of the beam-front electrons towards the plume which prevents them from escaping. The average 
we = 54 km/s in this region, which is equal to the ion bulk velocity of 1.8vibeam at the beam-front, confirming that the 
trapped electrons propagate along with ion beam.

The difference in the y and z-EVDFs, shown in Fig. 17, indicates that the electron temperature for the expanding plume 
is anisotropic. In particular, Tez is found to be higher than Tey because of the increase in thermal energy caused by the 
streamwise electron trapping as opposed to the temperature decrease associated with the radial expansion of the plume. 
In addition, the decrease in electron temperature from the thruster exit to the beam-front for an expanding plume sug-
gests that the use of a single Te in the Boltzmann relation [1] would not predict the electric field accurately, even for a 
quasi-neutral plume. Even so, the secondary peak in the EVDF at the beam-front can only be captured by a particle method. 
Finally, the observed electron trapping, ion–electron coupling mechanism to achieve a quasi-neutral state, as well as the 
anisotropy of the electron temperature obtained from our 3D octree-based PIC simulations are in qualitative agreement 
with previous studies [58,59] for the proton plasma plume.

5.2. Effect of ion mass on mesothermal plume characteristics – case 2

For case 2, changing the plume ion species from the lighter proton ions to the heavier xenon ions results in a more 
confined beam. Since the xenon ions are two orders of magnitude heavier than the proton mass, their thermal velocity 
is ten times smaller than that of the proton mass ions, which leads to the smaller radial spread for case 2 compared to 
case 1. The evolution of the instantaneous xenon ion charge density for case 2 at plasma times tωpeo = 600, 1000, 1500, 
and 3000, is shown in Figs. 18(a) to 18(d), respectively. As observed from the location of the dotted-line in Fig. 18, the 
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Fig. 19. Transient streamwise ion velocity variation, wion , normalized by the beam velocity, vibeam = 30,000 m/s.

beam-front is located at z = 0.1, 0.176, 0.27, and 0.54 m, at times, t = 3.37, 5.62, 8.43, and 16.85 μs, respectively. We can 
infer that the streamwise ion velocity, wion , is approximately 30,000 m/s within the beam, using the expression, zbf = t wion , 
where the beam-front location, zbf , is obtained from the location of the dotted line, shown in Figs. 18(a) to 18(d), at the 
respective times, t . It can also be observed that ρi > 2ρo within most of the plume, and sharply decreases to zero at the 
beam-front, contrary to the gradual decrease observed in the front one-third region of the lighter ion plume of case 1. This 
is again attributed to the heavier mass of the xenon ions which do not accelerate as quickly compared to the lighter proton 
ions, for the same attractive force exerted by the induced electric field. Similar to case 1, the electrons initially overshoot 
the beam-front leaving behind a positively charged beam, which in turn, traps the electrons introduced in the subsequent 
timesteps. The magnitude of the electron charge density increases to 4ρo within the plume, and its spatial variation is found 
to be similar to that of the ion charge density variation due to the electrostatic electron–ion coupling observed even for the 
proton plasma.

The variation of the streamwise ion velocity component, wion , normalized by the beam velocity, vibeam , is shown in 
Fig. 19 for plasma times tωpeo = 600, 1000, 1500, and 3000. Consistent with the evolution of the ion charge density, it 
is observed that the xenon ion velocity is equal to the initial beam velocity of 30,000 m/s within the plume up to the 
beam-front. At the beam-front, however, due to the attractive force exerted by the electrons that overshoot the beam-front, 
the maximum ion velocity is found to be 1.1vibeam , which is 40% smaller than the 1.8vibeam ion velocity observed at the 
beam-front for the lighter proton ions in case 1.

Fig. 20 shows the instantaneous electric potential, φ, for the evolving xenon plume at plasma times, tωpeo = 600, 1000, 
1500, and 3000. Similar to case 1, the electrons emitted at the beginning overshoot the beam-front due to their high 
thermal velocity, and the resulting positively charged plume electrostatically traps the electrons emitted in the subsequent 
timesteps. This trapping of electrons increases their number density, such that, the potential within the plume is uniform 
and quasi-neutral between 0 to 1 V, as shown in Fig. 20(a). But, since the ion beam at tωpeo = 1000 does not expand as 
much as in case 1, the trapped electrons are confined within a smaller radial width, resulting in an oval-shaped negative 
potential zone within the plume, as shown in Fig. 20(b). These trapped electrons travel along with the ion beam and 
eventually mix within the heavy xenon ion beam, such that, at tωpeo = 1500, the negative potential zone within the beam 
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Fig. 20. Spatial distribution of the instantaneous electric potential obtained for case 2 along the y–z center-plane.

diffuses, as shown in Fig. 20(c), and additionally, the potential near the thruster reaches quasi-neutrality. The electrons 
emitted in the subsequent timesteps are not trapped in this quasi-neutral region, and as a result, at tωpeo = 3000, the 
near-thruster potential is greater than 0 V as shown in Fig. 20(d). At the radial edges and the beam-front, the potential is 
−3 V, showing that the electrostatic forces cause the electrons to envelop around the ion beam.

The variation of the charge distributions along the plume axis at plasma time tωpeo = 3000, i.e., at t = 16.8 μs, is 
shown in Fig. 21(a). Similar to case 1, the amplitude of the ion and electron charge densities are equal and opposite along 
the plume axis, and the total charge distribution fluctuates about neutrality, demonstrating that the plume has achieved 
a quasi-neutral state. The ion charge distribution is observed to rapidly decrease from 4ρo at z = 0.47 m to zero at the 
beam-front, z = 0.54 m, as shown in Fig. 21(a). The corresponding electric potential variation along the plume axis is shown 
in Fig. 21(b). It can be seen that the potential reaches a maximum of 13 V at z = 0.05 m which is a factor of two higher 
than the maximum φ of 5 V observed for case 1 in Fig. 16(b). The decrease in the potential to 0 V at z = 0.46 m is due 
to the trapped electrons within the ion beam. Downstream from the beam-front, for z > 0.54 m, the potential gradually 
decreases to −12.5 V at the boundary due to the electrons that overshoot the beam. Fig. 21(b) shows that the maximum 
plume potential is 25.5 V higher than the boundary potential.

To analyze the effect of ion mass on the electron kinetic properties, the instantaneous EVDF were sampled at z = 0.005, 
0.1, and 0.54 m, within a radius of 0.05 m about the plume axis, at tωpeo = 3000, i.e., at t = 16.8 μs, as shown in Fig. 22. 
In Fig. 22(a), the y-velocity distributions sampled at z = 0.1 and 0.54 m are compared with analytical MB distributions, 
obtained using methods similar to that discussed for case 1. From the agreement between the sampled and analytical 
distributions, we can state that Tey decreases from 1.5 at z = 0.1 to 1.1 eV at z = 0.54 m due to the expansion of the 
beam. The Tex and Tey values obtained for case 2 are higher than those from case 1, shown in Fig. 17(a) because the 
electrons are trapped within a more confined beam-like Xenon ion plume as opposed to the proton plume that has a larger 
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Fig. 21. Variation of charge distribution and electric potential along the plume center-line at plasma time tωpeo = 3000 for case 2.

radial spread. This electron trapping within a confined region increases the thermal spread, and therefore the temperature. 
However, similar to case 1, the electron temperature for case 2 is also anisotropic, meaning that the Tez is not equal to Tex

and Tey .
The variation in the local z-EVDF for case 2 from the thruster exit to the beam-front are shown in Figs. 22(b) and 22(c). 

Close to the thruster exit, at z = 0.005 m, the z-EVDF is in close agreement with an MB distribution of Tez = 2 eV and 
average we = 88.9 km/s, as shown by the peak value of we/vteo = 0.15 in Fig. 22(b). The electrons that were initialized 
with a zero bulk velocity at the thruster exit are now accelerated to 88.9 km/s so that they can collectively propagate with 
the ion beam. This transition in the bulk velocity is captured by the kink in the EVDF near the thruster exit, similar to the 
near-thruster z-EVDF observed for case 1, in Fig. 17(b). As we move further downstream, at z = 0.1 m, the comparison of 
the sampled z-EVDF with the analytical MB distribution shows that Tez = 2 eV is unchanged, but the bulk velocity decreases 
to 30,000 m/s, as shown by the distribution peak value of we/vteo = 0.05 in Fig. 22(c). The decrease in the bulk velocity 
is due to the electron trapping in this region, which is also consistent with the decrease in the electric potential shown 
previously in Fig. 21(b). Incidentally, the bulk electron velocity of 30,000 m/s in this region is equal to the local streamwise 
ion velocity, indicating that the trapped electrons collectively travel with the ion beam. At the beam-front, z = 0.54 m, the 
bulk velocity of the electrons is maintained at 30,000 m/s, but the temperature decreases to Tez = 1.5 eV as observed from 
Fig. 22(c) due to expansion at the beam-front. The beam-front Tez is higher than Tey = 1.1 eV at the same location, showing 
that the degree of anisotropy in temperature is Tez/Tex = 1.36 for this case. Compared to case 1, the Tez for case 2 at the 
beam-front is higher by a factor of two, and unlike the secondary enhanced tail observed for the velocity distribution in 
Fig. 17(c) at the proton plasma beam-front, the case 2 distribution has no evidence of a secondary peak.

5.3. Neutralization from a shifted electron source – case 3

In this section, we discuss the effect of electron source location on plume dynamics and electron kinetic behavior. For 
case 3, the ion source is centered at (0.8, 0.8, 0.0) m, and the electron source is shifted along the y-direction, with its 
center at (0.8, 0.925, 0), highlighted by the black and gray blocks, respectively, at the inlet plane in Fig. 23(a). For all the 
subsequent figures in this subsection, the black and gray blocks at the inlet plane indicate the ion and electron source 
location, respectively. The transient evolution of the electron and ion charge density, normalized by ρo = eneo , is shown in 
Figs. 23 and 24, respectively, at plasma times tωpeo = 600, 1000, 1500, and 3000.

The shift in the electron source location affects the mechanism by which the electrons are trapped within the heavy 
xenon ion beam. As soon as the electrons are emitted at the shifted hollow cathode exit, the electrostatic forces attract 
these lighter electrons towards the heavier xenon ion beam. This is evident from the finite electron charge density near 
and below the ion source region, at y ≤ 0.88 m in Fig. 23(a). Due to this initial force exerted by the induced electric field, 
the electrons accelerate with a high negative y-velocity towards the ion beam, which is shown in Fig. 24, and overshoot its 
radial edge resulting in a positively charged plume center. At tωpeo = 1000, the off-shoot of electrons observed in Fig. 23(b) 
near the bottom edge of the beam at z = 0.18 m suggests that the electrons overshoot the ion beam edge, shown in 
Fig. 24(b). These electrons that overshoot are pulled back towards the plume reversing their direction, as observed from 
the envelop of electron charge density surrounding the ion charge density at tωpeo = 1500, shown in Figs. 23(c) and 24(c), 
respectively. As the plume evolves further, the ion beam traps the electrons within the beam, which in turn damps the 
cross-stream oscillations, so that the confined electrons propagate with the ion beam, as shown in Figs. 23(d) and 24(d) 
for tωpeo = 3000. In contrast, no such cross-stream electron oscillations were observed for case 2, which had a co-located 
electron and ion source.
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Fig. 22. Comparison of case 2 electron velocity distribution sampled from the simulation (the solid lines), at plasma time tωpeo = 3000, with the analytical 
MB distribution (dotted symbols), at locations z = 0.005, 0.1, and 0.54 m.

We observe striations in the plume beyond z = 0.36 m in the electron and ion charge density distributions shown in 
Figs. 23(d) and 24(d), respectively. Although such striations were observed in the modeling of plasma streamers [9–11], in 
this work, we attribute their formation to numerical noise since these contour plots show instantaneous results from the 
transient plume calculations. Additionally, the octree cell size in these regions is over-refined compared to the local Debye 
length with fewer than 20 particles, which may further contribute to noise, especially, for instantaneous results. The exact 
nature of these numerical striations as the plume reaches steady-state will be investigated in future work.

In comparison to case 2, the ion beam for case 3 has a wider radial expansion and longer streamwise extent. The 
maximum radial width of the case 3 ion beam at tωpeo = 1500 and 3000 is 0.2 and 0.4 m, as observed from Figs. 24(c) and 
24(d), respectively. In contrast, the maximum radial width of the case 2 ion beam was 0.16 m at tωpeo = 3000, as shown 
previously in Fig. 18(d). This is because, in case 3, the same electrostatic forces that attract the oscillating electrons towards 
the plume-axis also cause the ions to be repelled away from the plume axis, consequently results in a wider ion beam 
compared to that observed for case 2. The dotted lines shown in Figs. 24(a) to 24(d), indicate that the ion beam-front is 
located at z = 0.1, 0.19, 0.3 and 0.64 m at plasma times tωpeo = 600, 1000, 1500, and 3000, respectively. The beam-front 
for the shifted electron case at tωpeo = 3000, shown in Fig. 24(d) lies 0.1 m further downstream from the beam-front 
location observed at z = 0.54 m for case 2, shown in Fig. 18(d). This is due to the acceleration induced by the electrons that 
overshoot the beam-front in case 3, evidence of which can be seen from the finite number density of electrons downstream 
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Fig. 23. Transient electron charge density for case 3, along the y–z plane extracted at the center of the domain, normalized by ρo .

of the dotted-line, observed at all time instances as shown in Fig. 23. Additionally, the shift in the electron source breaks 
the axial symmetry in the ion charge and electron charge density variation within the plume, as shown in Fig. 24(d).

The instantaneous variation in electric potential for case 3 at plasma times tωpe = 600, 1000, 1500, and 3000, are shown 
in Fig. 25. At an initial plasma time of tωpe = 600, the maximum potential within the beam near the thruster exit is 50 V, 
as shown in Fig. 25(a). This confirms that, even though the electrons are attracted towards the beam, the electron charge 
density is higher at the radial edges compared to the beam-center, resulting in a positive potential at the plume-center. 
At times, tωpeo = 1000 and 1500, the maximum potential decreases by 10 V indicating that more electrons are trapped 
within the beam compared to earlier plasma times. Downstream from the thruster exit, the potential decreases along the 
plume axis towards the beam-front. As the plume expands further and the corresponding ion charge density decreases 
below 0.2ρo , the beam-front potential at tωpeo = 3000, shown in Fig. 25(d), is 80 V lower than the thruster exit potential 
of 40 V. Note that due to the Dirichlet boundary condition, the potential surrounding the electron and ion sources is zero, 
as observed in Figs. 25(a)–25(d).

The instantaneous streamwise ion velocities for case 3 at plasma times, tωpeo = 600, 1000, 1500, and 3000 are shown in 
Fig. 26. The heavy xenon ions are observed to decelerate to 0.9vibeam at the top y-edge of the beam, due to the electrostatic 
force exerted by the electrons that are emitted from the shifted source. As previously discussed, due to the electron oscilla-
tions in the y-direction, the electrons overshoot and envelop around the radial edge of the beam, consequently decelerating 
the ion streamwise velocity even at the lower y-edge of the beam as shown in Figs. 26(c) and 26(d) at times tωpeo = 1500
and 3000, respectively. Similarly, the electrons that overshoot the beam-front, as discussed previously in Fig. 23, accelerate 
the ions in the streamwise direction to 1.2vibeam at the beam-front as shown in Figs. 26(b) to 26(d). Due to the deceleration 
in the streamwise ion velocity at the radial edges and the acceleration at the beam-front, the leading edge of the plume is 
curved for case 3, as shown in Fig. 26(d), compared to the flat-shaped beam-front shown in Fig. 19(d) for case 2.

The charge densities extracted along the plume axis, (0.8, 0.8, z), for case 3 at tωpe = 3000 are shown in Fig. 27(a). 
The ion charge density gradually decreases from ρo at the thruster exit to zero at the beam-front, contrary to the constant 
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Fig. 24. Transient ion charge density for case 3, along the y–z plane extracted at the center of the domain, normalized by ρo .

ion charge density variation followed by a rapid decrease at the beam-front observed for case 2, shown in Fig. 21(a). In 
addition, the total charge distribution is positive prior to z = 0.36 m, beyond which the charge fluctuates about neutrality 
for case 3. Note that unlike case 2, the linear charge density profiles of ρi and ρe are not symmetric, as shown in Fig. 21(a). 
The instantaneous potential variation along the plume axis is shown in Fig. 27(b), where the potential decreases from 40 V 
at the thruster exit to −60 V towards the boundary. The potential is zero only at z = 0.36 as shown by the dotted line in 
Fig. 27(b), consistent with the total charge density variation dropping to zero at the same location, as shown in Fig. 27(a). 
Because the electron charge density in case 3 was higher at the beam-edges compared to the center, the potential variation 
along the plume axis is more gradual for case 3.

The previous discussion has focused primarily on the macroscopic properties of the evolving plume for case 3, how-
ever, examination of electron behavior at very early times provides insight into the physics of plume neutralization. These 
electron and ion kinetic properties can be understood from phase-space plots and EVDFs only from fully PIC simulations. 
The evolution of the charged particles in phase-space at early times provides a clear visualization of electron oscillations in 
the cross-stream y-direction, along which the electron source is shifted. Fig. 28 shows the electron and ion distribution in 
phase-space, where the cross-stream velocity, ve and vi , normalized by vteo , is plotted on the y-axis and the position of the 
charged particles in the streamwise direction is plotted on the z-axis, at tωpeo = 25, 50, 62.3, and 75. Since the ion velocity 
is much smaller than the electron velocity for a mesothermal plume, a zoomed-in view of the ion phase-space is shown in 
all the figures. Initially, at tωpeo = 25, the electrons exhibit a high negative velocity, indicating that the electrostatic forces 
attract the electrons towards the ion beam, as shown in Fig. 28(a), whereas, in contrast, the cross-stream velocities of the 
heavy xenon ions are symmetric about zero, with a range of vi/vteo = ±0.001. Due to their high negative y-velocity, the 
attracted electrons overshoot the radial edge of the ion beam, leaving the beam with a net positive charge. As discussed 
previously, this positively charged beam subsequently attracts the electrons back towards the beam resulting in a second 
electron population with a high positive velocity, at tωpeo = 50, as shown in Fig. 28(b). The two counter-streaming electron 
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Fig. 25. Transient electric potential variation for case 3, along the y–z plane extracted at the center of the domain.

populations with high positive and negative y-velocity components and the hole in the phase-space are a precursor to a 
two-stream instability [73]. However the hole in the phase-space does not grow in time, as observed from the electron 
phase-space plots at tωpeo = 62.3 and 75, shown in Figs. 28(c) and 28(d), respectively. This is because the ion beam traps 
the electrons within the plume, resulting in the mixing of the two counter-streaming populations, such that, the electron os-
cillations are damped and a finite number of electrons with zero cross-stream velocity exist within the beam. At these early 
times, the electrons that overshoot the ion beam-front due to the high streamwise thermal velocity, still exhibit a gap in 
the phase-space. This further confirms that the electron trapping mechanism within the heavy xenon ion beam is the main 
cause for the eventual mixing of the counter-streaming electrons, and the resulting decay of any instability characteristics.

To study the evolution of the electron oscillations in the cross-stream direction and their eventual dampling, we analyze 
the y-EVDF at tωpeo = 100, 200, 400, 1000, 1500, and 3000, as shown in Fig. 29(a). Note that, the electrons are sampled 
within a radius of 0.05 m around the plume axis at z = 0.005 m. At tωpeo = 100 and 200, the y-velocity distribution peak 
is at ve/vteo = −10 with a secondary peak at ve/vteo = 8 and 10, respectively. This shows that at early times, the electron 
velocity distribution is bi-modal, consistent with the phase-space characteristics observed for the electrons in Fig. 28. At 
tωpeo = 400, the spacing between the two peak locations decreases, and the normalized probability of electrons with zero 
cross-stream velocity increases to 0.4, supporting the hypothesis that the ion beam is trapping the electrons, which in turn, 
damps the electron oscillations. As the plume evolves to tωpeo = 1000, 1500, and 3000, the peak of the y-EVDF lies at 
ve/vteo = 0, with a smaller peak at ve/vteo = −8 showing that most electrons do not oscillate, and the electrons emitted 
from the shifted source are immediately attracted towards the plume. Downstream from the thruster-exit, the local y-EVDF 
sampled at z = 0.1 m within a radius of 0.05 m from the beam axis for plasma times tωpeo = 400, 1000, 1500, and 3000 
is shown in Fig. 29(b). Compared to the plateau-like distribution observed at tωpeo = 1000, where the probability is almost 
uniform for −8 < ve/vteo < 8, the distribution at tωpeo = 1500 and 3000 shows a peak at ve/vteo = 0. This suggests that 
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Fig. 26. Transient streamwise ion velocity for case 3, along the y–z plane extracted at the center of the domain, normalized by vibeam .

Fig. 27. Variation of charge distribution and electric potential along the plume center-line at plasma time tωpeo = 3000 for case 3.
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Fig. 28. Phase-space plot of the electrons (red) and ions (blue) showing the y-velocity component normalized by vteo along the y-axis, and the position in 
the streamwise direction along the z-axis.

Fig. 29. Evolution of the cross-stream velocity-component, ve , at z = 0.005 and 0.1 for case 3.
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Fig. 30. Normalized ue (blue), ve (green), and we (red) distribution functions at z = 0.1 and 0.56 m, at plasma time tωpeo = 3000.

as the trapped electron mix within the xenon ion beam, the bi-modal EVDF transitions to a single peak non-Maxwellian 
distribution, thereby damping the cross-stream electron oscillations.

The normalized ue , ve , and we EVDFs obtained at z = 0.1 and 0.56 m at tωpeo = 3000 are shown in Figs. 30(a) and 30(b), 
respectively. The EVDFs in all three directions are found to be non-Maxwellian, contrary to the Maxwellian distributions 
observed for case 2 with a co-located electron and ion source. The ue distribution has a single peak at both locations in 
comparison to the ve distribution which has secondary peaks at ±7vteo at z = 0.1 m (Fig. 30(a)) and at −4vteo (Fig. 30(b)) 
at z = 0.56 m. This is because the electron source is shifted in the y-direction causing the secondary peak in the EVDF 
primarily in that direction.

6. Conclusions

A coupled PIC-DSMC framework for plasma simulations using heterogeneous CPU–GPU architecture is described in this 
work. The PIC and DSMC modules in the CHAOS solver construct separate linearized Z-ordered forest of trees that respec-
tively satisfy the Debye length and local mean free path criteria and they are partitioned using different computational 
weights. The parallelization strategies to model the Particle-In-Cell approach by solving Poisson’s equation on the linearized 
octree is found to scale efficiently with increase in the number of GPUs. Strong scaling studies showed that equal parti-
tioning of leaf nodes among the GPUs does not necessarily lead to load balancing, especially for simulations that use fewer 
number of GPUs. However, with an increase in the number of GPUs, the scaling is near ideal.

Three mesothermal collisionless plume simulations were performed. In the first case, the electron and ion source was 
co-located and the ion mass was equal to that of a proton. The transient plume dynamics and electric potential showed that 
the plume achieved a quasi-neutral state by trapping electrons within the plume. The electron temperature was anisotropic, 
i.e., the cross-stream temperature components were not equal to the streamwise temperature component. In the second 
case, instead of a proton mass, xenon ions were introduced from the ion source to model the propellant used in real 
ion thrusters. The higher ion mass resulted in a more confined plume compared to the proton plasma which showed a 
larger radial spread. Since the beam-like xenon plume trapped the electrons within a more confined region, the electron 
temperatures for the xenon ion case were found to be higher than those obtained in case 1. For both the cases with 
co-located ion and electron sources, axial symmetry in the electron and ion properties was observed. Finally, in the third 
case, the electron source was shifted from the xenon ion source, to study the effect of electron source location on the 
plume dynamics. A bi-modal electron velocity distribution was observed to occur at early times indicating that the electrons 
that are emitted from the shifted source oscillate in the cross-stream direction due the electrostatic forces exerted by the 
beam. With the progression of time, the confined xenon beam traps these electrons and the cross-stream electron velocity 
distribution transitions to one centered at zero. The shift in the electron source also breaks the symmetry observed for the 
co-located cases, such that, the velocity distributions in all three directions are unequal. Furthermore, the electron velocity 
distributions in all three directions were non-Maxwellian, unlike the Maxwellian distributions observed for the co-located 
cases.

The electron kinetics can only be studied using a particle approach, such as PIC, and to improve computational run-time 
for such methods, hybrid CPU–GPU parallelization was exploited. Although an electrostatic plasma is modeled in this paper, 
the 2:1 octree framework can be extended to include the Maxwell’s equations for obtaining the magnetic field. Finally, the 
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Poisson solver for the 2:1 E-FOT can also be used for applications that require an electron-fluid approach, by reducing the 
mass, momentum and energy conservation equations to a Poisson-like form [21].
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Appendix A. Code snippet to compute locational key of face neighbor

1 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
2 / / ∗∗ Consider a l e a f node with id : l e a f I d ∗∗ / /
3 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
4 / / ∗ Variable De f in i t ion : ∗∗ / /
5 / / ∗ l e a f I d : Id of the l e a f under consideration ∗∗ / /
6 / / ∗ LeafLevel : Array of l e a f l e v e l for a l l the l e a f nodes ∗∗ / /
7 / / ∗ xyz_bit : Binary of x−min , y−min , & z−min posit ion of l e a f node ∗∗ / /
8 / / ∗ mod_xyzbit : Binary of x−min , y−min , z−min of face neighbor ∗∗ / /
9 / / ∗ dx_bit : Binary form of l e a f node s i ze , dx ∗∗ / /

10 / / ∗ FaceNbrLocKey : Location key of face neighbor ∗∗ / /
11 / / ∗ FaceNbrLeafId : Leaf Id of face neighbor ∗∗ / /
12 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
13 uint64_t Morton3(uint64_t x , uint64_t y , uint64_t z)
14 {
15 return ( (Partby2(x) <<2) + (Partby2(y) <<1) + (Partby2(z) ) ) ;
16 / / Partby2 code snippet i s given in Ref~ c i t e { RJDAL_CnF }
17 }
18 uint64_t Reverse_PartBy2(uint64_t n)
19 {
20 n &= 0x1249249249249249 ;
21 n = (n ^ (n >> 2 ) ) & 0x10c30c30c30c30c3;
22 n = (n ^ (n >> 4 ) ) & 0x100f00f00f00f00f;
23 n = (n ^ (n >> 8 ) ) & 0x001f0000ff0000ff;
24 n = (n ^ (n >> 16) ) & 0x001f00000000ffff;
25 n = (n ^ (n >> 32) ) & 0x0000000000ffffff;
26 return n;
27 }
28 ComputeFaceNbr( i n t leafId , i n t MaxLevel , i n t ∗LeafLevel)
29 {
30 / / Determine Morton Id of l e a f node with id : l e a f I d / /
31 xyz_bit = new uint64_t[ 3 ] ;
32 xyz_bit[0] = Reverse_PartBy2(uint64_t(MortonId[leafId] ) >>2) ;
33 xyz_bit[1] = Reverse_PartBy2(uint64_t(MortonId[leafId] ) >>1) ;
34 xyz_bit[2] = Reverse_PartBy2(uint64_t(MortonId[leafId] ) ) ;
35 / / mod_xyzbit i s the Morton Id of the face Nbr / /
36 uint64_t ∗mod_xyzbit = new uint64_t[ 3 ] ;
37 mod_xyzbit[0] = xyz_bit[ 0 ] ;
38 mod_xyzbit[1] = xyz_bit[ 1 ] ;
39 mod_xyzbit[2] = xyz_bit[ 2 ] ;
40 uint64_t dx_bit = uint64_t(1) <<uint64_t(MaxLevel−LeafLevel[leafId] ) ;
41 currentLeafLevel = LeafLevel[leafId] ;
42 i f (i_face<3)
43 {
44 i_dim = i_face;
45 Nbrs_face = i_face + 3;
46 mod_xyzbit[i_dim] −=1 ;
47 }
48 else
49 {
50 i_dim = i_face − 3;
51 Nbrs_face = i_face − 3;
52 mod_xyzbit[i_dim] = mod_xyzbit[i_dim] + dx_bit;
53 }
54 FaceNbrLocKey = Morton3(mod_xyzbit[ 0 ] ,mod_xyzbit[ 1 ] ,mod_xyzbit[ 2 ] ) ;
55 FaceNbrLeafId = LeafLocationArray[FaceNbrLocKey ] ;
56 }
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Appendix B. Code snippet to show dot product computation using MPI-CUDA

1
2
3 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
4 / / ∗∗ Consider vector d and q ∗∗ / /
5 / / ∗∗ We have to f ind the dot product gamma = d . q ∗∗ / /
6 / / ∗∗ Only a chunk of the vectors are stored on the GPU ∗∗ / /
7 / / ∗∗ So , compute dot product in two steps : ∗∗ / /
8 / / ∗∗ Local step : compute gamma_loc = dev_dvec . dev_qvel ∗∗ / /
9 / / ∗∗ Global step : Compute gamma = sum of gamma_loc of a l l procs ∗∗ / /

10 / / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//
11 / / ∗ Variable De f in i t ion : ∗∗ / /
12 / / ∗ NumLeafNodes : number of l e a f nodes on the GPU sub−domain ∗∗ / /
13 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//
14
15 / / Include the following in the CUDA f i l e / /
16 #include <cublas_v2 . h>
17
18
19
20
21 / / I n i t i a l i z e
22
23 cublasHandle_t cublasHandle = 0;
24 cublasStatus_t cublasStatus;
25 cublasStatus = cublasCreate(&cublasHandle) ;
26 double gamma_loc = 0 . 0 ;
27 double gamma = 0 . 0 ;
28 / / C a l l cublas to compute dot product of vector of doubles ( Ddot )
29 cublasDdot(cublasHandle ,NumLeafNodes ,dev_dvec, 1 ,dev_qvec,1 ,&gamma_loc) ;
30 cudaDeviceSynchronize( ) ;
31
32 / / C a l l Communication Subroutine to execute the following mpi_reduce command
33 CommunicationDomain−>AllReduceForDotProduct(gamma_loc ,gamma) ;
34
35
36 / / The following subroutine i s defined in the CommunicationDomain c l a s s
37 CommunicationDomain: :AllReduceForDotProduct(&loc_sum,&glo_sum)
38 {
39 / / Use MPI_Reduce to compute sum of a l l the p a r t i a l sums
40 MPI_Allreduce(&loc_sum,&glo_sum, 1 ,MPI_DOUBLE,MPI_SUM ,MPI_COMM_WORLD) ;
41 }
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