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Highlights
• Parallelized hybridizable DG method for electrostatic Particle-in-cell plasma simulations.
• HDG approach combined with collocation-type discontinuous Galerkin spectral element methods.
• Unstructured curved meshes for highly efficient simulation of complex 3D geometries.
• 3D Simulation of a complex ion optic used in spacecraft propulsion.

Abstract

A high-order hybridizable discontinuous Galerkin spectral element method (HDGSEM) for Particle-In-Cell (PIC) schemes
is presented for the simulation of electrostatic applications on three-dimensional unstructured curved meshes. The electrostatic
Poisson equation is solved and optionally a Boltzmann relation for the electron species can be used which leads to non-linear
source terms. The hybridizable formulation reduces the total number of unknowns of the field solver, allowing the simulation
of large problems. The implementation of the HDGSEM solver in a PIC code is described and validated using several test
cases with successively increasing complexity. It is shown that the high-order convergence properties are retained on curvilinear
meshes, likewise when material jumps are introduced. The simulation of an ion optic illustrates the applicability of the presented
method for complex geometries and large problem sizes.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Many plasma applications are far away from the thermal and/or chemical equilibrium or quasineutral plasma
conditions, e.g., electric space propulsion systems [1], plasma instabilities [2], vacuum discharges [3] and more.
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Therefore, it is very difficult or not possible to simulate such applications with classic continuum methods. Instead,
the Boltzmann equation or the collisionless special case named Vlasov equation has to be solved in such plasma
conditions. A well established way to find an approximate solution of this equation is the Particle-in-Cell (PIC)
method [2,4].

The main idea of the PIC method is the splitting of the particle movement that represents the plasma and the
calculations of the electric fields produced by the particle charge and boundary conditions. The electric fields are
calculated on a fixed grid in an Eulerian manner. The freely moving particles and the electric fields are coupled by
two interpolation steps. In the first step, the charge information of the particles is interpolated to the fixed mesh.
The electric field is calculated on the mesh using the charge information as source terms. In the second step, the
new electric fields are interpolated at the particle positions, in order to compute the Lorentz force and move each
particle.

The PIC approach for fully kinetic simulations including electrons in complex three-dimensional geometries
requires a high spatial and temporal resolution to achieve stable and physically correct results. Even though the
electrostatic assumption on the field evolution allows to exclude the time scale of electromagnetic waves, the plasma
frequency still needs to be resolved. The fast electron time scale can be excluded by using the Boltzmann relation
for the electron species. Spatially, the Debye length must be sufficiently resolved [2]. These requirements lead to
a high computational effort. On the one hand, a huge number of simulation particles can be necessary depending
on the plasma conditions. A very computationally consuming part in the particle movement is the particle tracking,
especially in the case of complex geometries, e.g., electric propulsion systems on unstructured grids in 3D.

Compared to low order field solvers, the high order discontinuous Galerkin method allows a sub-cell resolution
and therefore keeps high accuracy of the field solver even on coarse unstructured meshes [5]. Consequently, using
a coarse mesh with a high-order field solver can significantly reduce the total cost of a particle simulation, even
though the particle tracking cost per cell is higher.

It will be shown that an accurate solution with curved wall boundary conditions can only be found if the coarse
mesh has elements with curved element sides. Furthermore, the solver should have a good parallel performance.
Otherwise it would not be possible to simulate complex 3D applications. Regarding efficiency, two choices will be
made. First, we restrict ourselves to hexahedral curved elements and the discontinuous Galerkin spectral element
methods [6], where integration and interpolation points are collocated, yielding sparse tensor-product operators and
diagonal mass matrices. Secondly, we apply the hybridizable approach [7], to reduce the number of unknowns
involved in the Poisson solver from volume to surface degrees of freedom, which is especially beneficial in the
high-order case [8,9]. We refer to the method as HDGSEM.

The work is organized as follows. In Section 2, we describe the physical background. In Section 3, the numerical
methods are described in detail. In Section 4, we validate the field solver without particles on curved meshes with a
dielectric material as well as its interaction with a single particle and with particles in a plasma sheath. In Section 5,
the application of the scheme is demonstrated by simulating a gridded ion thruster with a complex geometry.

2. Theory

Collision-free electrostatic plasmas are described by the Vlasov–Poisson equation
∂ fα
∂t

+ vα

∂ fα
∂xα

+
F

mα

∂ fα
∂vα

= 0. (1)

Here, fα = fα(x, v, t) is the particle distribution function of species α depending on the position x, velocity v and
time t . Furthermore, m is the particle mass and F is the electrostatic Lorentz force given by

F = qα E, (2)

with the particle charge q and the electric field E. In this work, we neglect electromagnetic waves and consider
the electrostatic approximation, assuming that the electric field is irrotational [10]:

∇ × E = 0 ⇒
∂ B
∂t

= 0. (3)

A curl-free electric field can be described with the electrostatic scalar potential Φ:

E = −∇Φ. (4)
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Finally, we solve Gauss’s law to also take into account the interaction between electric fields and linear materi-
als [10]:

∇ · D = ρ, (5)

with the current density ρ and the displacement field D = εE. Here, ε = ε0εr is the product of the vacuum
permittivity ε0 and the relative permittivity of the material εr . Inserting Eq. (4) in (5), the electric potential is given
by

∇ · D = ∇ · (εE) = −∇ · (ε∇Φ) = ρ. (6)

The conditions at a material discontinuity with different ε+ and ε− are

Φ+ = Φ−, ε+(∇Φ)+ = ε−(∇Φ)− . (7)

The charge density ρ is computed from the particle distribution function fα of each species α as

ρ(x, t) =

∑
α

qα

∫
R3

fα(x, v, t) d3v. (8)

Furthermore, there exist different simplifications, e.g., fluid models for electrons. The most common electron fluid
model is the Boltzmann relation (BR). In the BR model it is assumed that the electrons are isothermal, the pressure
is described by an ideal gas and the electron drift velocity can be neglected [11,12]. The advantage of the BR model
is that it overcomes the different time scales between electrons and heavy particles due to the different inertias. For
the given assumptions, the electron number density ne is given by

nBR
e (x, t) = ne,ref exp

[
|qe|

kB Te
(Φ(x, t) − Φref)

]
, (9)

with the electron temperature Te, the potential Φ at the location of ne, the electron charge qe, the Boltzmann constant
kB and a reference potential Φref at the location xref with ne(xref) = ne,ref. Thus, we split the total current density
of (8) into ion and electron contributions

ρ(x, t) = ρI (x, t) + ρ(Φ) , (10)

ρI (x, t) =

∑
α ̸=e

qα

∫
R3

fα(x, v, t) d3v , (11)

ρ(Φ) = qenBR
e (x, t) . (12)

The definition of the reference point of Φref and ne,ref is mostly based on the quasi-neutral assumption ne = n I at
a known location. Inserting (9) into (12) yields

ρ(Φ) = ρref exp
[

|qe|

kB Te
Φ(x, t)

]
, ρref = qene,ref exp

[
−|qe|Φref

kB Te

]
. (13)

Note that the Poisson equation (6) becomes non-linear with the BR model:

−∇ · (ε∇Φ) = ρI + ρ(Φ). (14)

3. Numerical methods

The code PICLas [13], which is used in this work, models the relation between the electric field E and the
corresponding source ρ numerically by the well-known PIC method [2]. Here, the particle distribution function is
approximated as the linear combination of n P individual shape functions S with a weighting factor wk :

f (x, v, t) ≈

n P∑
k=1

wkS (xk(t)) δ (v − vk(t)) . (15)

This approximation can be taken as n P particles at positions xk with velocities vk and particle weights wk . Different
functions are possible and already tested for the shape function S, see [14]. The shape describes whether the particles
are assumed to be very local as in the case of S(xk(t)) = δ (x − xk(t)) or to be more blurry.

In PICLas, the Poisson equation for the electrostatic potential (6) is solved on a fixed unstructured mesh using
the high order HDGSEM, derived in Section 3.2.
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3.1. Solving the Poisson equation with Boltzmann relation

If the Boltzmann relation is used for the electrons, Eq. (14) becomes non-linear and is solved iteratively with the
Newton method. In each Newton iteration step n, we linearize the source term using a first order Taylor expansion

ρ(Φn+1) = ρ(Φn) + (ρΦ)n(Φn+1
− Φn) , (ρΦ)n

=
dρ

dΦ

⏐⏐⏐
Φn

, (16)

so that (14) becomes

(ρΦ)nΦn+1
+ ∇ · (ε∇Φn+1) = rn , rn

= ρI − ρ(Φn) + (ρΦ)nΦn (17)

which is iterated until the residual is smaller than a defined tolerance ϵtol:

∥(ρΦ)nΦn+1
+ ∇ · (ε∇Φn+1) − rn

∥2 < ϵtol (18)

In each Newton step, we need to solve a linear equation system. However, since ρΦ
n depends on the solution Φn ,

the system matrix has to be rebuilt for each Newton step. To save computational time, we use an approximation of
the derivative of the source (10). The exact derivative of the source reads

(ρΦ) =
αref|qe|

kB Te
exp

[
|qe|

kB Te
Φ

]
. (19)

If |qe| · |Φ| < kB Te, the derivative can be approximated by

(ρΦ) ≈ (ρΦ)linear =
αref|qe|

kB Te
(20)

Note that the right hand side rn is still computed at each iteration with the exact source (10) and its derivative (19).
Thus, once the Newton iteration converges, the solution fulfills (17) and becomes independent of the approximation
of ρΦ .

Nevertheless, we observe that the linear approximation can lead to a large number of Newton iterations. Using
the exact derivative, but keeping it fixed for a given number of iterations is found to reduce the iteration number
in many cases.

3.2. The hybridizable discontinuous Galerkin spectral element method

In this section, we derive the field solver used in PICLas. The solver is based on the hybridizable DG method,
with a spectral element representation on curved hexahedral elements, referred to as hybridizable discontinuous
Galerkin spectral element method (HDGSEM). For the non-linear case the following solution procedure must
be evaluated within each step of Newton’s method. In each spectral element, the solution is approximated as a
Lagrange interpolation polynomial on tensor-product basis functions with Gauss or Gauss–Lobatto points, and the
same points are used for the numerical integration of the variational form, yielding highly efficient implementations
for high order curved three-dimensional elements. We will closely follow the derivation of the hybridizable local
DG (LDG-H) method of Cockburn et al. [15].

As described above, we want to solve the electrostatic potential with the HDGSEM. In a first step, we rewrite
Eq. (17) into a first order system

E + ∇Φ = 0
ρΦΦ − ∇ · D = r , D = εE

(21)

with the permittivity ε. The equations are solved on the computational domain Ω , with Dirichlet and Neumann
boundary conditions

Φ
⏐⏐⏐
∂ΩDir.

= ΦDir. , D · n
⏐⏐⏐
∂ΩNeu.

= ε(E · n)Neu. . (22)

First, we subdivide Ω into nK non-overlapping and conforming hexahedral elements, Kν , ν = 1, 2, . . . , nK . The
element index is omitted if not necessary, so that K refers to any curved hexahedral element in physical space
x = (x1, x2, x3). Each element is mapped from a reference element K̂ with reference coordinates ξ = (ξ 1, ξ 2, ξ 3) ∈
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[−1, 1]3 to physical space, and the element mapping is represented by a Lagrange interpolation polynomial of
degree Ngeo

ξ ↦→ x : x(ξ ) =

Ngeo∑
m,n,o=0

x̂mnoℓm(ξ 1)ℓn(ξ 2)ℓo(ξ 3) . (23)

with element nodes x̂mno. From the element mapping, we deduce the covariant vectors, the Jacobian and
contra-variant vectors

ai =
∂x
∂ξ i

, J = ai · (a j × ak) , ai
=

1
J

(a j × ak) , (24)

with cyclic indices i, j, k. We can see that ai · a j
= δi j holds, and any vector quantity q is represented in the

covariant or the contra-variant basis as

q = ai q i
= ai qi , q i

= q · ai , qi = q · ai . (25)

If not stated otherwise, we assume Einstein summation. We also introduce the unit outward pointing normal n̂ in
reference space and define the outward pointing normal vector in physical space as well as the surface element as

n =
1
ŝ
J ai n̂i , ŝ =

⏐⏐J ai n̂i
⏐⏐ . (26)

To derive the variational form of the problem, we multiply (21) with the test functions for the electric field and its
potential Ē, Φ̄ and integrate over the domain⟨

E, Ē
⟩
Ω

+
⟨
∇Φ, Ē

⟩
Ω

= 0⟨
ρΦΦ, Φ̄

⟩
Ω

−
⟨
∇ · D, Φ̄

⟩
Ω

=
⟨
r, Φ̄

⟩
Ω

(27)

We subdivide the integral over Ω in the element contributions, and look at one element K⟨
E, Ē

⟩
K −

⟨
Φ, ∇ · Ē

⟩
K +

{
Φ∗ Ē · n

}
∂K = 0⟨

ρΦΦ, Φ̄
⟩
K +

⟨
D, ∇Φ̄

⟩
K −

{
(D∗

· n)Φ̄
}
∂K =

⟨
r, Φ̄

⟩
K

(28)

where we introduced the yet to be defined unique numerical traces Φ∗, D∗, since we allow for discontinuous
solutions at the element interfaces. We integrate the second equation by parts again, using only the inner surface
evaluation D−

· n, and get⟨
E, Ē

⟩
K −

⟨
Φ, ∇ · Ē

⟩
K +

{
Φ∗ Ē · n

}
∂K = 0

−
⟨
∇ · D, Φ̄

⟩
K −

{(
D∗

− D−
)
· nΦ̄

}
∂K +

⟨
ρΦΦ, Φ̄

⟩
K =

⟨
r, Φ̄

⟩
K

(29)

The main idea of the HDG method [15] is to reduce the equation system to a system solely depending on the
solution at each element interface e. We introduce the additional unknown λ, unique on each element interface,
together with its test function λ̄, and write the extended system as⟨

E, Ē
⟩
K −

⟨
Φ, ∇ · Ē

⟩
K +

∑
e∈∂K

{
Φ∗ Ē · n

}
e = 0

−
⟨
∇ · D, Φ̄

⟩
K −

∑
e∈∂K

{
(D∗

− D−) · nΦ̄
}

e +
⟨
ρΦΦ, Φ̄

⟩
K =

⟨
r, Φ̄

⟩
K{[[

D∗
]]

λ̄e}
e = 0

(30)

where the last equation imposes uniqueness of the numerical trace D∗ at each interface e, with the jump definition
for a vector v at an interface of two elements e ∪ ∂K (e), ∂K ′(e)

[[v]] = (v · n)K (e)
+ (v · n)K ′(e) . (31)

We make the local DG hybridizable (LDG-H) ansatz of [15] and set the numerical traces on the element interfaces
to

Φ∗
= λ , D∗n = D−n + τ (Φ−

− λ) (32)

with the stabilization parameter τ > 0.



154 M. Pfeiffer, F. Hindenlang, T. Binder et al. / Computer Methods in Applied Mechanics and Engineering 349 (2019) 149–166

We want to allow different materials of constant permittivity ε. We discretize the domain such that material
interfaces match the element interfaces, so that inside each element, we know that ε|K = εK is a constant. The
unique flux condition for D∗ already incorporates correctly the jump condition at the material interface (7). As
the electric field and its test function are element-wise polynomials only, we can rewrite the first equation using
E|K =

1
εK

D|K and D̄|K = εK Ē|K , which also restores the symmetry of the equation system.
Inserting the numerical traces and the assumption of a constant permittivity per element εK , we get

1
εK

⟨
D, D̄

⟩
K −

⟨
Φ, ∇ · D̄

⟩
K +

∑
e∈∂K

{
λ D̄ · n

}
e = 0

−
⟨
∇ · D, Φ̄

⟩
K +

⟨
ρΦΦ, Φ̄

⟩
K −

∑
e∈∂K

{
τΦΦ̄

}
e +

∑
e∈∂K

{
τλΦ̄

}
e =

⟨
r, Φ̄

⟩
K∑

e∈K ,K ′

({
D · nλ̄

}
e +

{
τΦλ̄

}
e −

{
τλλ̄

}
e

)
=

∑
e∈ΩNeu.

{
D · nλ̄

}
e ,

(33)

where we also included the Neumann boundary condition in the last equation. For Dirichlet boundaries, λ can be
specified directly, and for inner interfaces, the right hand side of the last equation of (33) is set to zero.

As a final step to get the discrete operator, we transform the integrals and derivatives in (33) to the reference
element K̂ and reference interface ê,

1
εK

⟨
J D, D̄

⟩
K̂ −

⟨
Φ,

∂(J ak
· D̄)

∂ξ k

⟩
K̂ +

∑
ê∈∂ K̂

{
λ D̄ · nŝ

}
ê = 0

−
⟨∂(J ak

· D)
∂ξ k

, Φ̄
⟩
K̂ +

⟨
J ρΦΦ, Φ̄

⟩
K̂ −

∑
ê∈∂ K̂

{
τΦΦ̄ ŝ

}
ê +

∑
ê∈∂ K̂

{
τλΦ̄ ŝ

}
ê =

⟨
J r, Φ̄

⟩
K̂∑

ê∈K ,K ′

({
D · nλ̄ŝ

}
ê +

{
τΦλ̄ŝ

}
ê −

{
τλλ̄ŝ

}
ê

)
=

∑
ê∈ΩNeu.

{
D · nλ̄ŝ

}
ê

(34)

We make a specific choice for the representation of the displacement field vector and the test function

D =
a j

J
D j , D̄ =

ai

J
D̄i (35)

leading to

1
εK

⟨
a j D j ,

ai

J
D̄i ⟩

K̂ −
⟨
Φ,

∂ D̄i

∂ξ i

⟩
K̂ +

∑
ê∈∂ K̂

{
λ(D̄i n̂i )

}
ê = 0 ,

−
⟨∂ D j

∂ξ j
, Φ̄
⟩
K̂ +

⟨
J ρΦΦ, Φ̄

⟩
K̂ −

∑
ê∈∂ K̂

{
τΦΦ̄ ŝ

}
ê +

∑
ê∈∂ K̂

{
τλΦ̄ ŝ

}
ê =

⟨
J r, Φ̄

⟩
K̂ ,

∑
ê∈K ,K ′

({
(D j n̂ j )λ̄

}
ê +

{
τΦλ̄ŝ

}
ê −

{
τλλ̄ŝ

}
ê

)
=

∑
ê∈ΩNeu.

{
D · nλ̄ŝ

}
ê .

(36)

We apply the spectral element idea, where tensor-product basis functions with Gaussian quadrature points ξmno

m, n, o = 0, . . . N are used to approximate the integrals and also define the Lagrange polynomial basis of degree
N for the solution and test function Φ, Φ̄ and D j , D̄i . For λ, λ̄, the 2D tensor-product Lagrange polynomials on
the element interface are used. Since the same points are used for the solution and the integration, we can largely
reduce the number of operations to build the linear matrix system, and all system matrices become very sparse.
For example, the mass matrix in the first equation of (36) becomes block-diagonal, with i, j = 1, 2, 3 block entries

1
εK

ωmωnωo

[
1
J ai · a j

]
ξmno

.

Finally, after applying the spectral element ansatz, Eq. (36) can be written as a symmetric linear equation system,
where we collect all degrees of freedom into a vector, consisting of the unknowns in the elements D,Φ and the
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unknowns on the element interfaces λ⎡⎢⎣A BT CT

B D ET

C E F

⎤⎥⎦
⎡⎢⎣D

Φ

λ

⎤⎥⎦ =

⎡⎢⎣ 0
r
DN

⎤⎥⎦. (37)

We reduce the full system to a symmetric system for the unknowns on the element interfaces λ only,[
Ẽ D̃−1 ẼT

+ C A−1 CT
− F

]
λ = Ẽ D̃−1

r + DN

D̃ = D − BA−1 BT , Ẽ = E − C A−1 BT . (38)

Note that A is diagonal with 3 × 3 blocks and B,D, D̃ are element block-diagonal matrices and therefore A, D̃ are
easy to invert. The HDGSEM solver is parallelized with MPI, element matrices are built locally, and we solve the
reduced λ system with an iterative conjugate gradient solver, using either a diagonal or block-Jacobi preconditioner.

Once the solution λ at the element interfaces is known, the evaluation of the potential and the electric field is
a post-processing step that only involves fast element-local solves of the first two equations in (33), which also
benefit from the tensor-product structure and the diagonal mass matrices.

4. Validation results

In this section, we first investigate the properties of the electrostatic field solver without particles, demonstrating
h- and p-convergence on three-dimensional curved meshes of a dielectric sphere. Secondly, we investigate the
interaction of a single point source with a planar dielectric material and the interaction of particles and electric
potential including the BR assumption in a plasma sheath.

4.1. Dielectric sphere

To study the HDG solver properties without particles, we validate the method against the analytical solution of
a dielectric sphere with radius R in a constant electric field E0 = (0, 0, E0)T , found in [10]. The electric potential
reads as

Φ(x, y, z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−

(
3

ε̃ + 2

)
E0 z r ≤ R,(

ε̃ − 1
ε̃ + 2

R3

r3 − 1
)

E0 z r > R

(39)

for the potential inside and outside of the sphere, with r =
√

x2 + y2 + z2 and ε̃ =
εin
εout

being the ratio of
permittivities. Note that due to the material jump, the potential field exhibits a kink that results in a discontinuous
curve progression of the electric field. The block-structured curved meshes were generated with the open source
high-order preprocessor HOPR [16], where polynomial degree of the element mapping Ngeo is an input parameter
and the interpolation nodes are placed exactly on the spherically shaped material interface.

Fig. 1 depicts the mesh and the potential field solution for ε̃ = 10 and E0 = −1 V/m with Ngeo = 2 and
polynomial degree of the solution N = 4. Fig. 2 compares the analytical with the numerical solution along the
z-axis showing excellent agreement for two different values of ε̃. The value ε̃ = 100000 demonstrates that the
proposed solver is able to cover the whole range of typically employed dielectric materials.

For the convergence study, we always compute the L2 error norm of the potential field, and we use the meshes
depicted in Fig. 3, where a slice of the coarsest mesh and two refinement levels are shown. The coarsest mesh
consists of 56 grid cells and each refinement step increases the number of cells by a factor of 8. Note that in each
refinement step, the interpolation points at the material interface are positioned exactly on the sphere surface, thus
the geometry error converges with the order O(Ngeo + 1).

As shown in Fig. 4, we investigate first the p-convergence on the coarsest mesh, where the polynomial degree of
the solution is increased, for different geometry approximations Ngeo = 1, . . . , 5. It clearly shows that high order
solutions are more accurate, but only if the curved geometry is also represented by high order polynomials of at
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Fig. 1. Cutaway of the electric field through a dielectric sphere and curvilinear mesh consisting of 80 cells with polynomial degree of the
geometry Ngeo = 2 and solution N = 4.

Fig. 2. Comparison of numerical and analytical solution for the potential Φ and the electric field Ez in z-direction for x = y = 0, ε̃ = 10
(left) and ε̃ = 100000 (right) for an externally applied field of E0 = −1 V/m.

Fig. 3. Fully spherical geometry. Three-dimensional view (left) of the coarse mesh with Ngeo = 5 and slice (right) showing three different
mesh resolutions, coarse (black), medium (red) and fine (blue) for Ngeo = 2. The shaded area shows the dielectric region . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. p-convergence of the L2 error for the potential Φ for the dielectric sphere with ε̃ = 10, for Ngeo = 1, . . . , 5.

Fig. 5. h-convergence of the L2 error of the potential Φ for the dielectric sphere with ε̃ = 10, for Ngeo = 1, . . . , 5 (left to right).

Table 1
Experimental order of convergence O for different polynomial degrees N and geometrical degrees Ngeo for the case of a dielectric sphere.

Ngeo N

1 2 3 4 5 6 7 8 9 10 11

1 2.18 2.03 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02
2 2.73 3.55 3.66 3.57 3.57 3.57 3.57 3.57 3.57 3.57
3 3.55 4.37 4.77 4.5 4.48 4.48 4.47 4.47 4.47
4 4.34 5.18 5.92 5.56 5.25 5.23 5.23 5.23
5 4.87 5.88 5.6 5.05 5.14 6.13 6.13

least Ngeo = N . The error is dominated by the geometrical approximation error, and an accuracy improvement is
found up to N = 2Ngeo. This is the limit where metric terms can be exactly interpolated by the solution points [17].

Fig. 5 shows L2 error norms for the potential field for the three different meshes (h-convergence) for different
geometry and solution approximation (1 ≤ Ngeo ≤ 5 and 1 ≤ N ≤ 11). For all meshes, a higher degree N improves
the solution. However, the order of convergence for N ≥ Ngeo is always dominated by the geometry O(Ngeo + 1),
as shown in Table 1, where all convergence rates are summarized.

Finally, the runtimes for matrix initialization and solve of the reduced λ system (38) are reported in Table 2, for
four selected simulations of the dielectric sphere. We use a CG solver with a diagonal-Jacobi preconditioner, and
the abort criterion was set to machine precision. The simulations were run with a single MPI rank on one Cray
XC40 node and also on 2 nodes and 48 MPI ranks. We compare a high order solution on the coarse mesh with
a lower order solution of similar L2 error on a finer mesh. For N = 5, a similar solution is found with N = 2
on a finer mesh with 64 times more cells. Secondly, at higher resolution, we compare a solution with N = 9 on
the coarse mesh to N = 5 on the fine mesh. The matrix initialization times are very similar, meaning that the
increased cost per high order grid cell balances with the lower number of cells. We want to point out that the solver
needs less iterations and less time per iteration for the high order simulation compared to the low order simulation,
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Table 2
Runtimes of high order solution on a coarse mesh (56 cells, 156 sides) and low order solution on a fine mesh (3584 cells, 10560 sides)
with similar L2 errors, for the dielectric sphere case. Runtime on 1 Cray XC40 node with 1 MPI rank and in brackets on two nodes with
48 MPI ranks. Note: DOF(Φ) = (N + 1)3#cells, DOF(λ) = (N + 1)2#sides.

N (Ngeo) #cells DOF(Φ) DOF(λ) L2(Φ) Init [s] Solve [s] #iter.

5 (5) 56 12.1·103 5.62·103 4.03·10−5 0.24 0.66 576
2 (2) 3584 96.8·103 95.0·103 11.2·10−5 0.46 35.7 1113

9 (5) 56 56.0·103 15.6·103 5.54·10−8 7.22 {0.38} 13.4 {0.69} 756
5 (5) 3584 774·103 380·103 44.4·10−8 14.9 {0.37} 310 {12.1} 2029

Fig. 6. Single charged particle in dielectric region with q = 1 C, d = 2 m, ε1 = 200 C/Vm and ε2 = 1 C/Vm. Slice in the x-y-plane
showing the analytical (left) and numerical (right) numerical solution. The scaling factor Φmax,ex = 1 · 10−3 V is the maximum value of the
analytical solution on the interpolation points.

still producing more accurate results. The parallel simulation times show the same behavior, despite a large load
imbalance for the coarse mesh, where only 56 cells and 156 sides are distributed on 48 MPI ranks.

4.2. Point source in dielectric medium

In order to validate the Poisson solver with source terms, we consider a test case with two dielectric regions ε1

for z > 0 and ε2 for z < 0 with a single point charge q at position (0, 0, d). The analytical solution for this problem
is found in [10] and reads

Φ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q

4πε1

(
1√

r2 + (d − z)2
−

(
ε2 − ε1

ε1 + ε2

)
1√

r2 + (d + z)2

)
, z ≥ 0

q
4πε2

(
2ε2

ε1 + ε2

)
1√

r2 + (d − z)2
, z < 0

(40)

with r =
√

x2 + y2.
The three-dimensional setup consists of a domain of size ∆x × ∆y × ∆z = 12 m × 12 m × 24 m which is

discretized by 3 × 3 × 6 grid cells with a polynomial degree N = 9. Fig. 6 illustrates the domain and the potential
field solution resulting from a positively charged particle placed in a dielectric region with ε1 = 200 C/Vm whereas
the second region is defined with ε2 = 1 C/Vm. Fig. 7 shows the particle positioned in the dielectric region, the
grid cells and a line plot along the z-axis comparing the analytical with the numerical solution.
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Fig. 7. Single charged particle in dielectric region (left) with a shape function radius, indicated as a circle, of rSF = 0.8 m (≈ 34 DOF within
the shape function sphere for N = 9) where the shaded area indicates the dielectric region. Line plot along the z-axis (right) comparing the
analytical with the numerical solution for q = 1 C, d = 2 m, ε1 = 200 C/Vm and ε2 = 1 C/Vm.

The singularity in the numerical solution is smoothed by the use of a polynomial shape function [14], specifically
the form found in [18]

S(r ) =
1

2β0(1.5, α + 1)πr3
SF

[
1 −

(
r

rSF

)2
]α

, (41)

where β0(x, y) denotes the beta function, rSF the cut-off radius and r the distance between a particle’s position and
a DOF to which the charge density is assigned. In this setup, a cut-off radius of rSF = 0.8 m and the exponent
α = 3 are chosen. This means that the shape function spans only over one cell with the largest deviation from
the analytical solution due to the singularity whereas outside the cell excellent agreement is found between the
simulation and the analytical solution.

4.3. Plasma sheath

The test case of a plasma sheath allows us to validate the full solver, where fields and particles are coupled.
Furthermore, the BR model for electrons is used, so also the non-linear field solve is tested.

The plasma sheath describes the shielding of a perfectly conducting wall in an unmagnetized and collisionless
plasma consisting of electrons and singly charged ions [19,20]. Due to a negative potential on a perfectly conducting
wall, the electrons are repelled by the wall whereas the positive ions are accelerated towards the wall. This charge
separation forms a potential that can be described analytically for a 1D case using the Boltzmann relation by [19]:

1
2
χ ′2

= ϑ2

[(
1 +

2χ

ϑ2

)1/2

− 1

]
+ e−χ

− 1. (42)

Here, χ = −qeΦ/(kB Te), χ ′
= −qe∂xΦ/(kB Te) and ϑ = vI /

√
kB Te/m I with ions entering the sheath with the

velocity vI and mass m I . The simulation is done using a pseudo 1D mesh with one cell in y and z-directions
as well as periodic boundary conditions and 20 cells in x direction. The length of the mesh is L = 0.03 m with
the Dirichlet boundary conditions for the potential of Φ(x = 0) = 0 V and Φ(x = L) = −0.18011 V. The
inflow boundary conditions at x = 0 of the ions and the electrons are described in Table 3. At x = L an open
particles boundary condition is used. For the BR model, the reference values are defined at the inflow x = 0 as
ne,re f = 1.0 · 1012 m−3 and Φre f = 0 V with isothermal electron temperature Te = 1000 K. The simulations are
done with a particle weighting ωk = 10 resulting in ≈ 2.67 · 104 ions in the steady state that is reached after
≈ 7.5 · 10−6 s simulation time. The used time step is ∆t = 1 · 10−7 s and the polynomial degree N = 5. The results
of the simulation as well as the analytical solution are shown in Fig. 8 and show excellent agreement.
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Table 3
Plasma sheath inflow boundary conditions.

Electrons Ions

n∞ [m−3] 1.0 · 1012 1.0 · 1012

T [K] 1000 1000
m [kg] 9.109 · 10−31 1.673 · 10−27

v [m/s] 0 11492.19

Fig. 8. Plasma sheath result of the simulation using the BR model compared with the analytical solution.

5. Ion optics

The simulation of ion optics, as used in gridded ion thrusters, is well-suited to demonstrate the capabilities of the
HDG-based PIC solver, since it allows to analyze the interaction between both field solver and particle routines when
applied to a complex three-dimensional geometry. The apertures have a cylindrical shape, thus a curved body-fitted
mesh to represent the wall boundary is needed for high order accuracy of the field solver, as shown in Section 4.

The quality of the simulation results depends on all PIC-specific aspects; the interpolation of charge densities
from particles onto the mesh (“deposition”), the accurate calculation of the electric field, and finally the field
evaluation and temporal integration of the equations of motion to update the particle positions. Each of these parts
is sensitive to the spatial discretization. 4th-order shape functions are used for deposition as already described in
Section 4.2, which need to be interpolated by a sufficient number of high order solution points [14].

In this section, we investigate the convergence behavior of the charge density field for varied polynomial degree
including the influence of the statistical uncertainty due to the particle approach.

5.1. Full simulation

In [1], the HDG-PIC method was already applied to simulate a full ion thruster optic, based on a RIT µX EBB
from ArianeGroup GmbH. Fig. 9 depicts the simulated extracted ion beams (iso-surfaces of number densities) within
the half geometry of the thruster. The discharge chamber has a diameter of 40 mm and is closed by a two-grid system
with 37 apertures in a pattern within a diameter of approximately 20 mm. This full simulation included ≈ 4.3 · 106

simulation particles for the ions as well as 90758 mesh cells with a polynomial degree of N = 4 resulting in
≈ 1.1 · 107 high-order interpolation points and illustrates the applicability to large problem sizes. The BR and fully
kinetic simulations were compared and resulted in good agreement between each other. The computation with BR
took tC PU ≈ 1 hour to reach steady state on 2400 cores of a Cray XC40 and allowed to use a 100 times greater
time step ∆t compared to the fully kinetic simulation. Independent from the electron model, the ratio tC PU /∆t was
constant and, therefore, the BR saved the factor of 100 also in computational cost.
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Fig. 9. Iso-surfaces for number density of extracted ion beams from quasi-neutral chamber condition in a RIT-µX (full simulation [1]).

5.2. Simplified simulation setup

For the following analysis, we want to keep the geometrical complexity while the domain size is reduced by
assuming two different simplified domains, both representing an effectively infinite pattern of grid apertures taken
from the full simulation setup. First, the computational domain (‘A’ in Fig. 10) spans over both grids and electrons
are included via the BR model. A quasi-neutral state is assumed at the ‘inflow A’ plane. The second domain (‘B’
in Fig. 10) is limited to an extent from which the low potentials would repel all electrons. Therefore, electrons can
be completely excluded from the simulations and only ions are considered. The upstream ‘inflow B’ plane between
first and second grids (see Fig. 11) matches well with the equipotential plane at 500 V from the full simulation.
The boundary conditions for the field solver are equipotential at the inflow and zero normal gradient at the outflow.
Additional zero-gradient conditions in x–y and x–z planes reduce the topology to two quarter apertures.

Fig. 11 depicts the surface mesh where boundary conditions (BCs) are applied, with corresponding definitions
in Table 12. For particles, open BCs remove crossing particles from the simulation, whereas symmetry conditions
perform specular reflection. For domain ‘A’, a mesh with 2416 cells (22 cells along the x-axis) was considered,
domain ‘B’ consists of 928 cells (10 cells along the x-axis), both with Ngeo = 2. The temporal integration of particle
trajectories was performed by a 5-stage, low-storage, explicit Runge–Kutta scheme of 4th order with a time step
of ∆t = 5 · 10−9 s, estimated from the ion velocity and electric field gradients. In the inflow region of domain ‘A’,
the upstream quasi-neutral state has an assumed bulk velocity of 2500 m/s, ion temperature of 450 K, and electron
temperature of 3.5 eV. For domain ‘B’, truncated ion beams were considered as inflow and, therefore, a pre-defined
radial velocity profile was imposed including a mean velocity of 34 700 m/s. The inflow flux was set to match a
beam current of 5 mA for the full thruster with 37 apertures.

5.3. Influence of field resolution on particle simulations

Similarly as for the verification studies in the previous chapter, the simulation results are compared between
different polynomial degrees N . The three-dimensional charge density field was chosen as characteristic, because it
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Fig. 10. Simplified computational domains (red and green), above with ion trajectories (blue). . (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Surface mesh.

is sensitive to the whole interaction between field solver and particle routines, independently of the actual effect of
space charges onto the electric field. Due to the Monte-Carlo-based insertion scheme of simulation particles, their
distribution is affected by a statistical noise. The deposition onto the mesh represents a smoothing approach with
a certain sample size of particles with a macro-particle factor of wk = 500. After having reached steady state, the
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Fig. 12. Boundary conditions.

Fig. 13. Contours of electric potential (above) and charge density (below) for BR case.

sample size of the deposited charge density ρ can be further increased by (arithmetically) averaging over ns time
steps between t1 and tns = t1 + ns · ∆t at each interpolation point x j of the field solver:

ρ̄(x j ) =

ns∑
i=1

ρ(x j , ti )/ns . (43)

This averaged charge density ρ̄ is used as comparative field based on which the deviations from a respective
reference solution are evaluated. The deviation is calculated as volumetric L2 norm ||ρ̄ − ρ̄re f ||L2 , but since no
analytical solution is available a solution with a very high polynomial degree Nre f is used as reference ρ̄re f . For the
comparison and integration of the L2 norm, all solutions were interpolated onto a mesh with equidistant interpolation
points of degree Nre f · (Nre f + 1).

Non-linear HDG. First, the self-consistent ion extraction from a quasi-neutral state is modeled by ions and
BR electrons inside the computational domain ‘A’. Fig. 13 depicts the resulting contours of electric potential
and ion charge density inside a symmetry plane through one grid aperture. In the inflow region with ρXe+ =
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1.3826 · 10−2 C/m3, quasi-neutrality is reached since the Boltzmann relation (BR) is set to the same negative value
for electrons at Φin = 1315 V. About 350000 particles are simulated in steady state, mostly within the dense
upstream region. Each time step, 3 Newton iterations were required for convergence of the non-linear solver using
exact source derivatives.

The convergence behavior is shown in Fig. 14 for three different sample sizes (ns = 5, 250, and 3400 time steps).
It can be seen that the L2 norm levels out after having reached a certain polynomial degree, thus, even an arbitrarily
higher N would not result in a smaller deviation from the reference solution with Nre f . This must not be interpreted
as a N -converged solution but rather as an integration of the statistical noise. However, it demonstrates that in the
PIC application, there is a maximum reasonable N beyond which the error due to the limited sample size exceeds
the error based on the field resolution. Even with exactly the same numerical parameters, two solutions cannot
match beyond their uncertainty from different random numbers due to the different particle positions. To quantify
this effect, the L2 norms were not only calculated for the deviations of mean ρ̄(x j ), but also for the corresponding
2-σ standard error of the mean (SEM) by Eq. (44) and can be interpreted as ||ρ̄ − ρ̄re f ||L2 with a reference solution
that equals ρ̄ but is shifted exactly by 2σ SEM(x j ) at every x j . Please note that for domain ‘A’, the ∥

2σ SEM∥L2
integration was only performed for mesh cells downstream of the quasi-neutral inflow state (x > 0 in Fig. 10) since
for x < 0 the statistical uncertainty is greater than in the evaluated region due to the smaller ion velocities and
would need much larger sample sizes.

∥
2σ SEM∥L2 =

√∑nK
j=1

∫
V j

(
2σ SEM(x j )

)2 dV j

Vtotal
,

( 2σ SEM(x j )
)2

=
2

ns(ns − 1)

ns∑
i=1

(ρi (x j ) − ρ̄(x j ))2.

(44)

Those additional L2 norms are included in Fig. 14 as dashed lines for all N and feature their proportionality to
n−0.5

s and independence on N . It can be seen that they are very similar to the respective convergence limits and
with increasing sample size the convergence limits decrease accordingly. After a ||ρ̄ − ρ̄re f ||L2 curve reaches the
threshold, it simply fluctuates within the same order of magnitude as of the limit itself.

Linear HDG. Eventually, the truncated domain ‘B’ is considered which enables to neglect electrons inside the
domain. After having reached steady-state with a simulation particle number of about 35000, charge densities were
averaged with ns = 250 as described before. Again, Fig. 15 depicts the L2 norms for different N with the highest
simulated N as reference. The diagram shows a very similar convergence behavior as the one with BR electrons
inside domain ‘A’.

6. Conclusion

An efficient Particle-in-Cell scheme based on a HDGSEM solver for electrostatic plasma applications has been
described and tested. The described solver is able to handle complex geometries by using unstructured curved
meshes and also allows the simulation of jumps in permittivity from different dielectrical materials. Additionally,
a Newton method is described to solve non-linear source terms arising from the Boltzmann fluid approximation
for electrons. The hybridized approach reduces the number of globally coupled unknowns and allows high-order
simulations of electrostatic plasma applications in an efficient, parallel way. Furthermore, the applied spectral
element idea which uses the same points for the solution and the integration largely reduces the number of operations
to build the linear matrix system.

The solver is validated with test cases of different complexity, where analytical solutions are known, including a
dielectric sphere, a point source in a dielectric medium and a plasma sheath. The convergence of the field solver is
investigated for different geometry approximations (Ngeo) and polynomial degrees (N ). It is shown that the expected
convergence behavior for increasing N can be reproduced, but only if at least the same high order representation
of the geometry is used (N ≥ Ngeo).

Finally, the applicability of the proposed method for complex electrostatic 3D problems is demonstrated with an
ion optics simulation. Here, it is also shown how the error of the particle source in a PIC simulation is restricted
by the discretization error of the particles. Due to the Monte Carlo nature of the particles, the accumulated error
of the PIC simulation cannot drop under the statistical error due to the particle discretization independent of the N
and Ngeo.
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Fig. 14. L2 norm for domain ‘A’ with BR (reference Nre f = 7; 9; 9).

Fig. 15. L2 norm for domain ‘B’ with ions only (ns = 250).
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