
Geochemistry, Geophysics, Geosystems

Flexible and Scalable Particle-in-Cell Methods With Adaptive
Mesh Refinement for Geodynamic Computations

Rene Gassmöller1 , Harsha Lokavarapu1, Eric Heien2, Elbridge Gerry Puckett3 ,

and Wolfgang Bangerth4

1Department of Earth and Physical Sciences, University of California, Davis, CA, USA, 2Computational Infrastructure for
Geodynamics, University of California, Davis, CA, USA, 3Department of Mathematics, University of California, Davis, CA,
USA, 4Department of Mathematics, Colorado State University, Fort Collins, CO, USA

Abstract Particle-in-cell (PIC) methods couple mesh-based methods for the solution of continuum
mechanics problems with the ability to advect and evolve properties on particles. PIC methods have
a long history and numerous applications in geodynamic modeling. However, they are historically either
implemented in sequential codes or in parallel codes with structured, statically partitioned meshes. Yet
today’s codes increasingly use adaptive mesh refinement (AMR) of unstructured coarse meshes, dynamic
repartitioning, and scale to thousands of processors. Optimally balancing the work per processor for a PIC
method in these environments is a difficult problem, and many existing implementations are not sufficient
for this task. Thus, there is a need to revisit these algorithms for future applications. Here we describe
challenges and solutions to implement PIC methods in the context of large-scale parallel geodynamic
modeling codes that use dynamically changing meshes. We also provide guidance for how to address
bottlenecks that impede the efficient implementation of these algorithms and demonstrate with numerical
tests that our algorithms can be implemented with optimal complexity and that they are suitable for
large-scale, practical applications. We provide a reference implementation in the Advanced Solver for
Problems in Earth’s ConvecTion (ASPECT), an open source code for geodynamic modeling built on the DEAL.II

finite element library.

1. Introduction

Most methodologies to numerically solve flow problems are based on a continuum description in the form
of partial differential equations and include the finite element, finite volume, and finite difference methods.
On the other hand, it is often desirable to couple these methods with discrete, “particle” approaches for a
number of applications. These include, for example, visualization of flows, tracking interfaces and origins, or
tracking the history of material. Use cases and discussions of computational methods can be found as far back
as Harlow (1962) and are often referred to as particle-in-cell (PIC) methods.

Different implementations of such methods can be found in the geodynamic literature (Gerya & Yuen,
2003; McNamara & Zhong, 2004; Moresi et al., 2003; Poliakov & Podladchikov, 1992; Popov & Sobolev, 2008;
Thielmann et al., 2014), but almost all of these methods were developed for either structured meshes and/or
sequential computations. However, over the past two decades, adaptive finite element methods have demon-
strated that they are vastly more accurate than computations on uniformly refined meshes (Ainsworth & Oden,
2000; Bangerth & Rannacher, 2003; Carey, 1997; Heister et al., 2017; Kronbichler et al., 2012) and have been
successfully combined with PIC methods in other fields (Adams et al., 2015; Almgren et al., 2013; Balay et al.,
2018; Wallstedt & Guilkey, 2010). While many parts of existing PIC algorithms can still be used in this context, a
number of new algorithmic challenges arise. The present contribution is therefore primarily an assessment of
possible algorithms when implementing particle methods for computational geodynamics in the following
two situations:

1. Unstructured, hierarchically refined quad-/octree, 2-D/3-D meshes that change dynamically and potentially
utilize higher-order polynomial mappings to represent curved geometries; and

2. Large parallel computations that run on thousands of cores, using tens of millions of cells, and billions of
particles.

TECHNICAL
REPORTS:
METHODS
10.1029/2018GC007508

Key Points:
• Particle-in-cell methods

require new algorithms
when applied to dynamically
partitioned, adaptively refined
finite-element calculations

• We present approaches for particle
generation, sorting, and hybrid load
balancing in hierarchically refined
finite-element computations

• We show scalability and applicability
of the developed methods for
problems in computational
geodynamics

Supporting Information:
• Supporting Information S1
• Data Set S1

Correspondence to:
R. Gassmöller,
rene.gassmoeller@mailbox.org

Citation:
Gassmöller, R., Lokavarapu, H.,
Heien, E., Puckett, E. G., & Bangerth, W.
(2018). Flexible and scalable
particle-in-cell methods with adaptive
mesh refinement for geodynamic
computations. Geochemistry,
Geophysics, Geosystems, 19, 3596–3604.
https://doi.org/10.1029/2018GC007508

Received 27 FEB 2018

Accepted 18 JUL 2018

Accepted article online 10 SEP 2018

Published online 27 SEP 2018

©2018. American Geophysical Union.
All Rights Reserved.

GASSMOELLER ET AL. 3596

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1525-2027
http://orcid.org/0000-0001-7098-8198
http://orcid.org/0000-0002-6589-7395
http://orcid.org/0000-0003-2311-9402
http://dx.doi.org/10.1029/2018GC007508
http://dx.doi.org/10.1029/2018GC007508
https://doi.org/10.1029/2018GC007508
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2018GC007508&domain=pdf&date_stamp=2018-09-27

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

Specifically, we will discuss the following components, along with an assessment of their practical perfor-
mance:

1. Parallel generation of particles in unstructured meshes;
2. Treatment of particles as they cross cell and processor boundaries; and
3. Treatment of particles during mesh refinement and coarsening, including appropriate load balancing.

Other components in our reference implementation use well-understood algorithms: We use standard C++
containers as data structures; integrate the particle trajectories using Forward-Euler, Runge-Kutta 2 or 4 inte-
gration schemes with higher-order accuracy in space and time; store variable scalar-, vector-, or tensor-valued
properties on particles; and transfer information between particles and mesh using simple arithmetic or har-
monic cell averaging schemes or least-squares projections. Massively parallel output capability is provided
by the VTK (Schroeder et al., 2006) and HDF5 (Folk et al., 1999) data formats. As our manuscript is focused on
the particular difficulties of combining particle methods with adaptive finite element computations, we do
not discuss traditional difficulties of particle methods, such as memory locality or particle clustering, as these
have already been addressed elsewhere (Mellor-Crummey et al., 2001; Wang et al., 2015).

We provide a reference implementation of the presented methods in the geodynamic modeling code
ASPECT (Bangerth et al., 2017a; Heister et al., 2017; Kronbichler et al., 2012) and include most of the
discipline-independent methods in the deal.II finite element library (Arndt et al., 2017; Bangerth et al., 2007),
thus making them available for a variety of applications and scientific disciplines. Given that our implementa-
tion is based on deal.II, we will henceforth only consider quadrilateral and hexahedral, hierarchically refined
meshes, which are balanced by a 2:1 refinement ratio between neighboring cells. Exploiting these assump-
tions allows us to optimize our algorithms, but we believe that generalizations to other situations are often
straightforward.

2. Computational Methods
2.1. Parallel Particle Generation
The first step in using particles in mesh-based solvers is their creation on all involved processors, and depend-
ing on their purpose, initial particle distributions may vary widely. Two broad classes of initial distributions
come to mind.

2.1.1. Random particle positions
Randomly chosen particle locations are often used in cases where particles represent the values of a field;
for example, the origin and movement of a specific type of material. In these cases, one is not interested
in prescribing exact initial particle locations, and randomly chosen locations are acceptable. The probability
distribution, 𝜌(x), from which locations are drawn is often chosen as uniform over the domain. Alternatively,
one can use a higher particle density in regions of interest, for example, to better resolve steep gradients,
which can be interpreted as equivalent to adaptive mesh refinement (AMR) in mesh-based methods.

We propose the following algorithm, running on each processor:

1. Compute and store local cell weights as integral of 𝜌(x) over each local cell.
2. Compute the global sum of the local cell weight integrals.
3. Compute the local number of particles as ratio between local and global weight integral times global

number of particles.
4. Compute the local starting particle index based on the partial sum of local number of particles of all

processes with lower rank.
5. Either: Compute the number of particles per cell by randomly drawing cells K according to their weight

repeatedly and tallying up how many times each cell was selected.
6. Or: Compute the number of particles per cell according to their share of the local integral of 𝜌(x)
7. Generate local particles in each cell K by drawing random locations inside its axes-parallel bounding box BK

until we find a position in K (see Supporting Information S1 for details).

Apart from the two global reductions to determine the global weight and the local start index, all of the
operations above are local to each processor. Thus, the overall run time for generating particles is proportional
to the number of particles on the process with the largest number of particles, that is, of optimal complexity
in the global number of particles and, if the number of particles per process is balanced, also in the number
of processes. However, this balancing is often not the case in practice (see section 2.3).

GASSMOELLER ET AL. 3597

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

We note that our algorithm yields a number of particles on each process that is deterministic. Consequently,
the distribution of particles is not entirely random. However, in practice, we find that this does not matter for
sufficiently many particles.

2.1.2. Prescribed particle locations
An alternative to the random arrangements of particles is to exactly prescribe initial locations, either algo-
rithmically (e.g., a regular grid) or by reading locations from a file. Surprisingly, for distributed unstructured
meshes, this case is more computationally expensive than randomly generated particle locations.

Let us assume that the initial positions of all particles are given in an array xk , k = 1…N. Then for each par-
ticle, one has to find its surrounding cell, which in the worst case, is of complexity global number of particles
times local number of cells. This is because, for general unstructured meshes, we cannot predict whether a
given particle’s location lies inside the locally owned cells without searching through all cells. This limits the
usefulness of the algorithm to moderate numbers of particles. However, the algorithm can be accelerated by
checking whether a particle’s location lies inside the bounding box of the locally owned cells, before checking
each cell.

On hierarchically refined meshes, one can alternatively find the cell K by finding the coarse level cell in which it
is located and then recursively searching through its children. This reduces the complexity to the global num-
ber of particles times the logarithm of the local number of cells. However, it only works if child cells occupy the
same volume as their parent cell; this condition is often not met when using nonlinear polynomial mappings
to represent curved geometries.

In the paragraphs above, we assume that the particle positions are known in the global coordinate system,
and we have to search for the surrounding cell. If, however, the particle coordinates are known in the local
cell coordinate system (e.g., the center), then the algorithm is much simpler. A loop over all cells and all local
particle coordinates that are then mapped into the real space (as used in Puckett et al., 2017) will generate
the particles in the optimal order and will be cheap.

2.2. Transport Between Cells and Subdomains
PIC codes in geodynamics contain a time integration in which one computes a velocity field (usually on some
grid) and then moves the particles with the flow field. To parallelize these computations, the grid is usually
fully distributed, which means each process only knows about local cells and one layer of “ghost” cells around
the local domain. Thus, after each particle movement, the new particle location is either inside its original cell
K or in a different cell K ′. To be able to transfer data between particle and grid, we then need to find its new
cell that may be owned by the same processor or a different one. The challenge in the context of adaptive,
distributed meshes lies in constructing algorithms that can efficiently search for the new surrounding cells
of particles, as well as potentially transfer the particle to a different processor. In practice, communication
patterns that cover the exchange of particles between processes that own adjacent parts of the mesh are often
sufficient to implement, which is achieved using point-to-point messages. In particular, this is possible if the
particle time step is chosen such that the Courant-Friedrichs-Lewy number is less than or equal to 1, because
then particles travel no more than one cell diameter in each step. Following these arguments, our reference
implementation employs the following algorithm, executed for each particle that is not in its old cell:

1. Search for the locally known current cell K ′.
2. If K ′ is owned by the current process, mark the particle as being in K ′.
3. If K ′ is in a ghost cell owned by the process p, mark the particle for transmission to p.
4. If K ′ cannot be found, mark particle for deletion.

After the algorithm has finished, (1) all particles marked for transmission are communicated to their neighbors
that now own them, (2) all particles that have been lost or communicated are removed from local storage, and
(3) all particles with a new cell association (local or communicated) are reinserted into local storage. This bulk
handling is advantageous, since particles of the same cell tend to move into the same neighbor cells, and a
collective insertion reduces copies and reallocation of memory.

The vast majority of particles remain in the current cell, end up in a new local cell (option 2), or a cell owned by
another process (option 3). A few cases, however, do not fall in these categories. First, the ordinary differential
equation integrator error during particle movement can carry a particle over a processor boundary and out of
the one-cell ghost layer. Second, the integrator error can transport a particle across a geometry boundary, after

GASSMOELLER ET AL. 3598

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

Figure 1. In 2:1 balanced quadtree meshes, finding the new cell K′ for a particle that has left its old cell K is a nontrivial problem. Limiting the search to the cells
that contain the vertex of the old cell that is closest to the new particle position (left) reduces the search cost. Note that sorting neighbor cells according to angle
between a and bK′ (right, see main text for definitions) correctly predicts the search order (red numbers) in most cases, while a simpler criterion like
particle-cell-center distance mispredicts the new cell (middle).

which it is not contained in any cell. For a benchmark model setup (see Data Set S1), we have found that only a
negligible fraction of particles is lost because of these two mechanisms. As expected, an explicit Euler scheme
loses significantly more particles than the RK2 methods, while decreasing the time step significantly reduces
the loss. Given the small overall loss and added computational expense to reduce the time step, dropping
particles that fall out of bounds (option 4) seems like a reasonable approach to us.

The algorithm above requires finding the cell a particle is in now (step 1). As discussed in section 2.1, with-
out additional information, this requires (Nlocal cells) operations, all of which are expensive. Furthermore,
because many of the local particles cross to a different cell, this step is not of optimal—that is, (N) for N
particles—complexity. While the tree structure of the mesh makes it possible to implement global tree-search
algorithms with logarithmic complexity in the number of cells (Isaac et al., 2015), we found that the algorithm
spends the majority of its works on determining whether a particle is inside a cell K ′, that is, inverting the map-
ping of K ′ for the position of the particle. Since in our application, the vast majority of particles only cross from
one cell to its neighbors, we can accelerate the global algorithms significantly by first searching all neighbor
cells in an order that makes it likely that we find the correct one early. Only the very small fraction that does
not end up in a neighbor then requires an expensive search over all cells. We note that for problems without
this local property, other algorithms might be more appropriate (e.g., Burstedde, 2018; Mirzadeh et al., 2016).

Following some experimentation, we found that the following strategy to presort local neighbor cells works
best (see also Figure 1): Let p′ be the particle’s current position, K the known previous cell of the particle, v be
the vertex of K closest to p′, and cK′ be the center of the potential new cell K ′, which is a vertex neighbor of
K adjacent to vertex v (see Figure 1). Let a = p′ − v be the normalized vector from the closest vertex of K to
the particle, and bK′ = cK′ − v be the normalized vector from the closest vertex to the center of cell K ′. Then
we search through all K ′ in the order of descending scalar product a ⋅bK′ (Figure 1, right). In other words, cells
with a center in the direction of the particle movement are checked first. This algorithm is somewhat similar to
the one proposed by Capodaglio and Aulisa (2017), with the difference that we know our particle is in one of
the neighbors of the old cell, and we therefore search through a sorted list of neighbor cells, instead of along
a computed search path through multiple cells. While there are corner cases in which our algorithm fails to
find the new cell in the first try, in practice, more than 98% of the particles moving to a new cell in the models
discussed in section 3 are found immediately. The rest of the particles is found in at most two (2-D) or four
(3-D) searches, except if the particle left the immediate neighbors of the old cell as discussed above. Simpler
criteria—like searching by distance between particle and cell center (Figure 1, middle)—fail more often, in
particular for adaptively refined neighbors.

If particles crossed a process boundary, they are communicated to neighboring processes in two steps. First,
two integers are exchanged between every neighbor and the current process, representing the number of
particles that will be sent and received. In a second step, every process transmits the serialized particle data
and receives its respective data from its neighbors. This allows us to implement all communications as non-
blocking point-to-point transfers, only generating O(1) transmissions and O(Nlocalparticles) data per process.
Since we already determined which ghost cell contains this particle on the old process, we also transmit this

GASSMOELLER ET AL. 3599

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

information. Because ghost cells are guaranteed to exist on the owning process, we thus avoid another search
for the enclosing cell on the new process.

2.3. Handling Adaptively Refined, Dynamically Changing Meshes
In the current context, adaptively refined, dynamically changing meshes present two particular challenges.

2.3.1. Mesh refinement and repartitioning
Typically, refinement and coarsening happens in two steps: First, cells are refined or coarsened separately
on each process, and particles are distributed to the children of their previous cell (upon refinement) or are
merged to the parent of their previous cell (upon coarsening). The second step of mesh adaptation consists
of redistributing the resulting mesh to achieve an efficient parallel load distribution (Bangerth et al., 2011;
Burstedde et al., 2011). To keep this process simple, we append the serialized particle data to other data already
attached to a cell (such as vertex locations and values of field-based solution variables) and transmit all data
at the same time. We can therefore utilize existing software for parallel mesh handling (Burstedde et al., 2011),
which uses well-optimized bulk communication patterns, and thereby avoid sending particles individually or
having to rejoin particles with their cells.

2.3.2. Load balancing
The mesh repartitioning discussed in the previous paragraph is designed to redistribute work equally among
all available processes. For mesh-based methods, this typically means equilibrating the number of cells each
process “owns.” On the other hand, in the context of PIC methods for adaptive meshes, the number of par-
ticles per cell frequently ranges from zero to a few hundred. Consequently, the described process leads to
unbalanced workloads during particle-related parts of the code. Conversely, rebalancing the mesh to equili-
brate the number of particles leaves the mesh-based algorithms with unbalanced workloads. Both situations
reduce the overall parallel efficiency of the code.

The only approach to restore perfect scalability is to partition cells differently for the mesh-based and
particle-based parts of the code. On the other hand, one cannot avoid transporting all mesh and particle data
during these rebalancing steps, because each phase of the algorithm might require all data from the other.
Consequently, the amount of data that has to be transported twice per time step is significant.

In practice, some level of imbalance can often be tolerated. One can work with the following compromise
solutions:

1. Repartition the mesh according to the combined particle and cell load (balanced repartitioning). Instead of esti-
mating the workload of each cell during the rebalancing step as constant (pure mesh-based methods) or
proportional to the number of particles in a cell (pure particle-based methods), one can estimate it as an
appropriately weighted sum of the two. The resulting mesh is optimal for neither of the two phases but is
better balanced than either of the extremes (see section 3.2 and Figure S1).

2. Ignore imbalance. As long as the number of particles is small, one may simply ignore the imbalance. A typical
case is when particles are only used to output information for a few specific points of interest, for example,
an accumulated strain profile through a subducting slab.

3. Adjust particle density to mesh during particle generation. The particle density can be chosen to follow the
mesh resolution, if the region of the highest mesh resolution is known in advance. This is most useful for
tracking preexisting interfaces. The higher particle density close to the interface then not only increases the
accuracy in regions of interest, but it also improves parallel efficiency and scalability.

4. Adjust mesh to particle density. Instead of prescribing the particle density following the mesh, the mesh reso-
lution can also be adjusted to the particle distribution. As in the previous alternative, the alignment of mesh
and particle density yields better parallel efficiency and scaling.

5. Adjust particle density to mesh by particle population management. In cases of a priori unknown regions of
high mesh density, it can be necessary to manage the particle density actively during the model run. This
includes removing particles from regions with high particle density or adding particles in regions of low
density. If done appropriately, the result will be a mesh where the average number of particles per cell is
managed so that it remains approximately constant.

While the last three approaches lead to better scalability, they may of course not suit the problem one orig-
inally wanted to solve. On the other hand, generating additional particles upon refinement of a cell, and
thinning out particles upon coarsening, is a common strategy in existing codes (Leng & Zhong, 2011; Popov

GASSMOELLER ET AL. 3600

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

Figure 2. Scaling of algorithms. (top row) Results for a uniformly refined mesh. (bottom row) Results for an adaptively refined mesh. (left column) Model
geometry and initial parallel partition. (middle column) Strong scaling for a constant number of cells and particles. (top right) Weak scaling for a uniform mesh
with a constant number of cells and particles per process. (bottom right) Weak scaling for an adaptive mesh with a fixed (though increasingly unbalanced)
number of cells and particles per process. The dashed models use the common cell load balancing, while the solid models use balanced repartitioning as
described in section 2.3.

& Sobolev, 2008). We also note that while load balancing is particularly important for dynamically changing
adaptive meshes, it is also beneficial for uniform meshes if the particle distribution happens to be nonuniform.

3. Scalability

To verify our claims of performance and scalability, we show that our algorithms scale well to typical model
sizes in computational geodynamics. Technical information about the used hardware and the definition of the
timing events is provided in Supporting Information S1. Additional benchmarks confirming the correctness
of the implemented advection schemes is provided in Supporting Information S1 and Figure S1.

3.1. Uniform Meshes
We first show scalability using a two-dimensional benchmark case with a static and uniformly refined mesh.
We employ a circular-flow setup in a spherical shell, with no flow across the boundary. Particles are distributed
randomly with uniform density (see Figure 2, top left) and are advected using a RK2 integration scheme.

The top row of Figure 2 shows excellent weak and strong scaling over at least three orders of magnitude
of model size. For a fixed problem size (strong scaling), we use a mesh with 786, 432 = 12 ⋅ 2562 cells and
1.536 ⋅ 107 particles. Increasing the number of processes from 12 to 12,288 shows an almost perfect decrease
in wall time for all operations, despite the rather small problem each process has to deal with for large num-
bers of processes. Note that the scaling of the Exchange particles event is likely specific to the used network
topology and probably shows the transition from a large-throughput large-latency mode of transfer to a small
message-size small-latency transfer.

Keeping the number of cells and particles per core fixed and increasing the problem size and number of
processes accordingly (weak scaling, Figure 2, top right), the wallclock time stays constant between 6 and
6,144 processes. In this test, each process owns 512 cells and 1.0 ⋅ 104 particles. Each refinement step leads
to four times as many cells, and consequently processes. 6,144 cores was the last multiple to which we had
access for timing purposes. Results again show excellent scalability, even to large problem sizes, in this case
approximately 3 million cells and 61 million particles.

GASSMOELLER ET AL. 3601

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

3.2. Adaptively Refined Meshes
Discussing scalability for adaptive meshes is more complicated because increasing level of refinement does
not create a predictable number of cells. We apply the same particle distribution and integration as for the
uniform mesh case but use a model setup based on the benchmarks presented in van Keken et al. (1997),
extended to three spatial dimensions. Specifically, we use a rectangular domain [0, 0.9142] × [0, 1] × [0, 1]
that contains a sharp nonhorizontal interface separating a less dense lower layer from a denser upper layer.
The shape of the interface then leads to a Rayleigh-Taylor instability. For the strong scaling tests, we create an
adaptive mesh of at most 2563 cells, retaining fine cells only in the vicinity of the interface. This mesh consists
of approximately 1,000,000 cells, and we generate approximately 30 million, uniformly distributed particles,
and run this setup on increasing numbers of processors.

The results in Figure 2 show that strong scaling for the adaptive grid case is nearly as good as for the uniform
grid case, decreasing the total runtime essentially linearly from 96 to 3,072 cores. The small worse-than-linear
component of the cell-search algorithm seems to be related to the imbalance between particles and cells that
will be further discussed in the weak scaling results, but since this part is one order of magnitude cheaper
than the particle advection, it will only limit the scalability beyond 10,000 cores. As for the uniform mesh, the
Exchange particles algorithm shows some variations, likely caused by the interaction between the allocated
compute nodes and the network topology used for the tests. Because this scaling test actually solves for the
Stokes solution on the finite element mesh, we are more restricted in the number of possible model sizes
compared to the synthetic test for uniform meshes above. Increased memory consumption excludes very
small core numbers and limited scaling of the Stokes solver for very small number of degrees of freedom per
core limits the maximum number of cores. Nevertheless, 100 to 3,000 cores is the most common model size
for our application and increasing or decreasing the model size has not revealed significant changes to the
scaling behavior outside of the here presented range.

Setting up weak scaling tests requires further consideration. Since we cannot predict the number of cells for
a given number of mesh refinements, we use a 163 mesh and adaptively refine it a variable number of times
taking note of the resulting numbers of cells. We then run this model series with increasing number of cores
to keep the number of cells per process approximately constant at 550 cells per process. Each of the models
uses ≈25 times as many particles as cells, uniformly distributed across the domain.

The weak scaling results are more difficult to interpret than the strong scaling case. In a first series, we only
strive to balance the number of cells per process (option 2 in section 2.3). However, because the particle den-
sity is constant while cell sizes increasingly vary, the imbalance in the number of particles per process grows
with the size of the model. This is easily seen in the bottom left panel of Figure 2 in which all four processes
own the same number of cells but vastly different volumes and consequently numbers of particles. Therefore,
the run time for some parts of the algorithm—in particular for particle advection—grows as the model size
increases (dashed lines, bottom right panel of Figure 2).

As discussed in section 2.3, this effect can be addressed by balancing cell and particle numbers. The solid lines
in the bottom right panel of Figure 2 show that with appropriately chosen weights, the increase in runtime
can be reduced from a factor of 30 to a factor of 4. To achieve this, we introduce a cost factor W for each
particle. The total cost of each cell in load balancing is then one (the cost of the field-based methods per cell)
plus W times the number of particles in this cell. W = 0 implies that we only consider the number of cells for
load balancing, whereas W = ∞ only considers the number of particles. In practice, one will typically choose
0 ≤ W < 1; for realistic applications, we found W = 0.01 to be adequate. On the other hand, computational
experiments suggest that it is not important to exactly determine the optimal value since the overall runtime
varies only weakly in the vicinity of the minimum (see Figure S1).

4. Example Application: Convection in the Earth’s Mantle

We illustrate the applicability of our algorithms to realistic applications by modeling compressible Stokes
flow in the Earth’s mantle constrained by known movements of the tectonic plates at the surface for the past
250 million years. The equations we solve and the model setup are identical to a previously published model
(Heister et al., 2017) but enhanced by adding 4.8 million particles, which are used to track material movement
over time. The particles are generated randomly with a uniform distribution and are integrated with a RK2
integration scheme, and in order to enforce balanced parallel workloads, we limit the maximum number of

GASSMOELLER ET AL. 3602

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

Figure 3. Illustration of a 3-D mantle convection model with particles. (left) Subducting plates below the Western
United States (brown particles) push material at the core-mantle boundary (dark blue sphere) toward the west. Only a
selection of particles is shown, and each is colored by the distance from its initial position (blue = small to
green = large). (right) Vertical slice through the subduction zone. All particles close to the slice are shown, and they are
colored by the radius of their initial position (red = surface; blue = core-mantle boundary).

particles per cell to 25 and remove additional particles dynamically during the model run. Therefore, at the
final time, regions with coarse cells have a lower particle density than finely resolved regions (see right panel
of Figure 3). As the number of particles is relatively small, it was not necessary to use balanced repartition-
ing to improve load balancing. Material properties such as density and heat capacity are computed from a
database for basaltic and harzburgitic rocks, following Nakagawa et al. (2009), and the viscosity is based on a
published viscosity model incorporating mineral physics properties, geoid deformation, and seismic tomog-
raphy (Steinberger & Calderwood, 2006). The prescribed surface velocities use reconstructions of past plate
movement on Earth (Seton et al., 2012).

In the first time steps of this example model (before the number of particles is influenced by particle deletion),
particle advection takes approximately 2.0 s per time step, particle cell-search requires 1.4 s per time step, par-
ticle generation is a one time process requiring 6.7 s, and particle communication was negligible, compared
to a total time per time step of 26 s. A linear extrapolation to a larger number of particles (e.g., 20 per cell, as
needed for active particles) would suggest a total particle cost of about 50% of the total runtime; although this
is highly simplified as for more particles, a balanced repartitioning strategy could save significant amounts of
runtime.

Figure 3 shows a part of the example model, the present-day state of the Farallon subduction zone below
the Western United States. Particles that are initially close to the core-mantle boundary are colored by the
displacement they have experienced. This reveals that the Farallon slab (orange) has primarily pushed the
easternmost material. Particles in the Central Pacific have not moved significantly, illuminating the limited
influence of the West Pacific subduction zones.

5. Conclusions

In this article, we have presented strategies for implementing PIC methods in computational geodynamic
problems that use unstructured adaptive meshes. We have described our algorithms for the parallel genera-
tion of particles including both random and prescribed particle locations, and how utilizing information about
the neighbors of cells can efficiently help to predict the owning cell of a particle. We discussed different load
balancing techniques during mesh repartitioning and explained how balanced repartitioning can improve
scalability significantly even in the presence of imbalanced workloads such as the ones that occur when com-
bining unstructured AMR and PIC methods. Finally, we have documented in scaling tests and application
examples that the expected optimal complexities can indeed be realized in practice. While there is certainly
room for optimization in the presented algorithms, we are convinced that the present state allows for useful
combination of unstructured AMR and PIC techniques in geodynamic modeling codes. Our implementation
is freely available as part of the ASPECT and DEAL.II software.

GASSMOELLER ET AL. 3603

Geochemistry, Geophysics, Geosystems 10.1029/2018GC007508

References
Adams, M., Schwartz, P. O., Johansen, H., Colella, P., Ligocki, T. J., Martin, D., et al. (2015). Chombo software package for AMR

applications-design document (Tech. Rep.). Berkeley, CA: Applied Numerical Algorithms Group Computational Research Division
Lawrence Berkeley National Laboratory.

Ainsworth, M., & Oden, J. T. (2000). A posteriori error estimation in finite element analysis. New York: John Wiley.
Almgren, A. S., Bell, J. B., Lijewski, M. J., Lukić, Z., & Van Andel, E. (2013). Nyx: A massively parallel AMR code for computational cosmology.

The Astrophysical Journal, 765(1), 39.
Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., & Kronbichler, M. (2017). The deal.II library, version 8.5. Journal of Numerical

Mathematics, 25, 137–145. https://doi.org/10.1515/jnma-2017-0058
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., et al. (2018). PETSc users manual (Tech. Rep. ANL-95/11 - Revision

3.9). Argonne National Laboratory.
Bangerth, W., Burstedde, C., Heister, T., & Kronbichler, M. (2011). Algorithms and data structures for massively parallel generic adaptive finite

element codes. ACM Transactions on Mathematical Software, 38(2), 1–28.
Bangerth, W., Dannberg, J., Gassmöller, R., & Heister, T. (2017b). Aspect v1.5.0 [software]. https://doi.org/10.5281/zenodo.344623
Bangerth, W., Dannberg, J., Gassmöller, R., & Heister, T. (2017a). ASPECT: Advanced Solver for Problems in Earth’s ConvecTion user manual.

https://doi.org/10.6084/m9.figshare.4865333
Bangerth, W., Hartmann, R., & Kanschat, G. (2007). deal.II—A general purpose object oriented finite element library. ACM Transactions on

Mathematical Software, 33(4), 24.
Bangerth, W., & Rannacher, R. (2003). Adaptive finite element methods for differential equations. Basel: Birkhäuser Verlag.
Burstedde, C. (2018). Parallel tree algorithms for AMR and non-standard data access. ArXiv e-prints.
Burstedde, C., Wilcox, L. C., & Ghattas, O. (2011). p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees.

SIAM Journal on Scientific Computing, 33(3), 1103–1133. https://doi.org/10.1137/100791634
Capodaglio, G., & Aulisa, E. (2017). A particle tracking algorithm for parallel finite element applications. Computers & Fluids, 159, 338–355.
Carey, G. F. (1997). Computational grids: Generation, adaptation and solution strategies. Washington, DC: Taylor & Francis.
Folk, M., Cheng, A., & Yates, K. (1999). HDF5: A file format and I/O library for high performance computing applications. In Proc. ACM/IEEE

Conf. Supercomputing (SC’99).
Gerya, T. V., & Yuen, D. A. (2003). Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling

geological flows with strongly variable transport properties. Physics of the Earth and Planetary Interiors, 140(4), 293–318.
Harlow, F. (1962). The particle-in-cell method for numerical solution fo problems in fluid dynamics.
Heister, T., Dannberg, J., Gassmöller, R., & Bangerth, W. (2017). High accuracy mantle convection simulation through modern numerical

methods—II: Realistic models and problems. Geophysical Journal International, 210(2), 833–851. https://doi.org/10.1093/gji/ggx195
Isaac, T., Burstedde, C., Wilcox, L. C., & Ghattas, O. (2015). Recursive algorithms for distributed forests of octrees. SIAM Journal on Scientific

Computing, 37(5), C497–C531. https://doi.org/10.1137/140970963
Kronbichler, M., Heister, T., & Bangerth, W. (2012). High accuracy mantle convection simulation through modern numerical methods.

Geophysics Journal International, 191, 12–29.
Leng, W., & Zhong, S. (2011). Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies.

Geochemistry, Geophysics, Geosystems, 12, Q04006. https://doi.org/10.1029/2010GC003425
McNamara, A. K., & Zhong, S. (2004). Thermochemical structures within a spherical mantle: Superplumes or piles? Journal of Geophysical

Research, 109, B07402. https://doi.org/10.1029/2003JB002847
Mellor-Crummey, J., Whalley, D., & Kennedy, K. (2001). Improving memory hierarchy performance for irregular applications using data and

computation reorderings. International Journal of Parallel Programming, 29(3), 217–247.
Mirzadeh, M., Guittet, A., Burstedde, C., & Gibou, F. (2016). Parallel level-set methods on adaptive tree-based grids. Journal of Computational

Physics, 322, 345–364. https://doi.org/10.1016/J.JCP.2016.06.017
Moresi, L., Dufour, F., & Muhlhaus, H. B. (2003). A Lagrangian integration point finite element method for large deformation modeling of

viscoelastic geomaterials. Journal of Computational Physics, 184, 476–497.
Nakagawa, T., Tackley, P. J., Deschamps, F., & Connolly, J. A. (2009). Incorporating self-consistently calculated mineral physics into

thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle.
Geochemistry, Geophysics, Geosystems, 10, Q03004. https://doi.org/10.1029/2008GC002280

Poliakov, A., & Podladchikov, Y. (1992). Diapirism and topography. Geophysical Journal International, 109(3), 553–564.
Popov, A. A., & Sobolev, S. V. (2008). SLIM3D : A tool for three-dimensional thermomechanical modeling of lithospheric deformation with

elasto-visco-plastic rheology. Physics of the Earth and Planetary Interiors, 171, 55–75. https://doi.org/10.1016/j.pepi.2008.03.007
Puckett, E. G., Turcotte, D. L., He, Y., Lokavarapu, H., Robey, J. M., & Kellogg, L. H. (2017). New numerical approaches for modeling

thermochemical convection in a compositionally stratified fluid. Physics of the Earth and Planetary Interiors, 276, 10–35.
https://doi.org/10.1016/j.pepi.2017.10.004

Schroeder, W., Martin, K., & Lorensen, B. (2006). The visualization toolkit: An object-oriented approach to 3D graphics (3rd ed.). New York:
Kitware.

Seton, M., Müller, R., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., et al. (2012). Global continental and ocean basin reconstructions since
200 Ma. Earth-Science Reviews, 113(3-4), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002

Steinberger, B., & Calderwood, A. R. (2006). Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics
and surface observations. Geophysical Journal International, 2, 1461–1481. https://doi.org/10.1111/j.1365-246X.2006.03131.x

Thielmann, M., May, D. A., & Kaus, B. J. P. (2014). Discretization errors in the hybrid finite element particle-in-cell method. Pure and Applied
Geophysics, 171, 2165–2184.

van Keken, P. E., King, S. D., Schmeling, H., Christensen, U. R., Neumeister, D., & Doin, M.-P. (1997). A comparison of methods for the modeling
of thermochemical convection. Journal of Geophysical Research, 102(B10), 22,477–22,495. https://doi.org/10.1029/97JB01353

Wallstedt, P., & Guilkey, J. (2010). A weighted least squares particle-in-cell method for solid mechanics. International Journal for Numerical
Methods in Engineering, 85(13), 1687–1704.

Wang, H., Agrusta, R., & van Hunen, J. (2015). Advantages of a conservative velocity interpolation (CVI) scheme for
particle-in-cell methods with application in geodynamic modeling. Geochemistry, Geophysics, Geosystems, 16, 2015–2023.
https://doi.org/10.1002/2015GC005824

Acknowledgments
All models were computed with the
open-source software ASPECT
(http://aspect.geodynamics.org;
Bangerth et al., 2017b) published under
the GPL2 license, and the necessary
data to reproduce the models are
included in the supporting information.
We thank the Computational
Infrastructure for Geodynamics
(http://geodynamics.org) which is
funded by the National Science
Foundation under awards EAR-0949446
and EAR-1550901. R. Gassmöller and
W. Bangerth were partially supported
by the National Science Foundation
under award OCI-1148116 as part of the
Software Infrastructure for Sustained
Innovation (SI2) program; and by the
Computational Infrastructure in
Geodynamics initiative (CIG), through
the National Science Foundation under
Award EAR-0949446 and The University
of California—Davis. E. G. Puckett was
supported by the National Science
Foundation under Award ACI-1440811
as part of the SI2 Scientific Software
Elements (SSE) program. The
computational resources were provided
by the North-German Supercomputing
Alliance (HLRN) as part of the project
bbk00003 “Plume-Plate interaction in
3D mantle flow—Revealing the role of
internal plume dynamics on global hot
spot volcanism.”

GASSMOELLER ET AL. 3604

https://doi.org/10.1515/jnma-2017-0058
https://doi.org/10.5281/zenodo.344623
https://doi.org/10.6084/m9.figshare.4865333
https://doi.org/10.1137/100791634
https://doi.org/10.1093/gji/ggx195
https://doi.org/10.1137/140970963
https://doi.org/10.1029/2010GC003425
https://doi.org/10.1029/2003JB002847
https://doi.org/10.1016/J.JCP.2016.06.017
https://doi.org/10.1029/2008GC002280
https://doi.org/10.1016/j.pepi.2008.03.007
https://doi.org/10.1016/j.pepi.2017.10.004
https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.1111/j.1365-246X.2006.03131.x
https://doi.org/10.1029/97JB01353
https://doi.org/10.1002/2015GC005824
http://aspect.geodynamics.org
http://geodynamics.org

	Abstract
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (ECI-RGB.icc)
 /CalCMYKProfile (Photoshop 5 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

