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Abstract

Considerable progress has been made on automatic hexahedral mesh generation in recent years. A few automated meshing algorithms (e.g.

mapping, submapping, sweeping) have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general

algorithms viable on arbitrary geometry, a combination of the well-established algorithms is ready to take on classes of complicated

geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithms, the original geometry

becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a

part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically

decompose a CAD model into hex meshable volumes. There are four phases in this approach: Feature Determination to extract decom-

position features; Cutting Surfaces Generation to form the cutting surfaces; Body Decomposition to get the imprinted volumes; and Meshing

Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. This paper focuses on describing feature

determination and volume decomposition; the last part has been described in another paper. The feature determination procedure is

based on the CLoop feature recognition algorithm that is extended to be more general. Some decomposition and meshing results are

demonstrated in the ®nal section. q 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Finite Element Analysis (FEA) technique is widely

used for parts prototyping and design veri®cation. Meshing,

the procedure to discretize geometry for the FEA model,

tends to be time-consuming and error prone. The automa-

tion of mesh generation can immediately speed the product

design cycle with faster design veri®cation. Using hexahe-

dral meshes for analysis is preferable to tetrahedral mesh in

some applications [1]. Many researchers have been investi-

gating algorithms to automate the hexahedral meshing

procedure to get all-hexahedral elements models [2].

Although signi®cant progress has been made over the

years, the completely automated method that is demanded

by designers who practice FEA is not yet available due to

the general dif®culty of ®lling hexahedral elements into 3D

space.

Meshing is a process of spatial decomposition. During the

procedure of meshing, a physical 3D space is decomposed

into small elements with required topology and geometry

constraints. Available techniques for generating hexahedral

meshes can be characterized by the constraints on the region

being meshed and the resulting mesh quality; typically, the

more constrained an algorithm's domain of applicability,

the higher the quality of the mesh generated. The algorithms

that are most widely used for generating hexahedral meshes

are mapping/submapping, meshing primitives, and sweep-

ing.

The mapping/submapping algorithms [3,4] generate

structured meshes by ®rst identifying the logical ªcornersº

of the mesh, then placing the mesh nodes in space using

interpolation from the boundary mesh. These algorithms

work best on ªblockyº volumes, and are computationally

inexpensive. However, their domain of applicability is
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quite restricted, and in some cases applying these algorithms

to arbitrary volumes requires user interaction to identify

corners in the map/submap.

Meshing primitives have also been widely used, either

explicitly through implementation in a meshing tool [5±

7], or implicitly by the user decomposing an arbitrary region

into mappable regions using well-known strategies (e.g. u-

grid, c-grid, etc.). These techniques expand slightly the

domain of applicability of mapping and submapping, but

otherwise are very similar in mesh quality and the required

level of user interaction.

Various forms of the sweeping algorithm have been

proposed [8±11]; sweeping generates mesh by extruding

one or more surface meshes into the third dimension.

While sweeping has been used extensively to generate

very complex meshes, its domain of applicability is

restricted to volumes that have a logical extrusion direc-

tion. The identi®cation of such volumes, along with the

source and target surfaces of the extrusion, has been auto-

mated [12]; however, the domain of applicability is still

restricted.

There are also many algorithms being researched whose

goal is to generate a hexahedral mesh fully automatically for

arbitrary volumes. Whisker weaving [13,14] is an advancing

front algorithm that generates hex mesh connectivity in the

dual space, and then places the mesh nodes in physical

space. The grid based method described in Refs.

[15,16]constructs a structured grid in the interior of the

body and then generates elements in the boundary region

by using an isomorphism technique. Various algorithms

have also been proposed for generating hex-dominant

meshes, where hex elements are placed near the boundaries

of the solid and tetrahedra are used to ®ll any remaining

space. Notable among these approaches are H-Morph [17]

and Plastering [18]. Although substantial progress has been

made on these all-hex and hex-dominant algorithms, none

of them is currently robust enough to be used as the only

generation method in typical models.

Thus, the current state of the art for generating all-hexa-

hedral meshes for complicated geometries requires the

decomposition of a model into smaller pieces, each of

which can be meshed with one of the algorithms described

earlier. This ªdivide and conquerº approach, although time-

consuming, has been shown to be quite effective for gener-

ating large hexahedral meshes [19,20]. This leads to the

question of whether the process of decomposing a model

into pieces, each of which can be meshed with algorithms

such as sweeping and mapping, can itself be automated.

There has been some research done on decomposition-

based approaches to quad and hex meshing. Blacker

proposes a knowledge system approach that automates

two-dimensional quadrilateral mesh generation [21,22]. In

this approach, a 2D decomposition process is developed to

subdivide the geometry into ªmappableº sub-regions. In 3D,

the problem of decomposition and meshing becomes more

complicated, with the identi®cation of primitive regions and

the construction of cutting surfaces used in the decomposi-

tion being signi®cantly more dif®cult.

Armstrong et al. suggest using the medial axis transform

(MAT) technique for decomposition and meshing [5,6,23]

The medial surface is described by the center of an inscribed

sphere with maximum radius rolling through the model.

Armstrong, Price, et al. use the medial surface to guide

the decomposition of the model, and the midpoint subdivi-

sion technique is used to mesh the resulting primitive

volumes. The computation of a medial surface is not a trivial

task and, so far, suf®ciently reliable and practically effective

algorithms for generating medial surfaces are not available

yet. This technique also has dif®culty in decomposing

completely arbitrary volumes into recognizable primitives.

Sheffer et al. [24] propose to use the Embedded Voro-

noi Graph for guiding decomposition. Embedded Voronoi

Graph is used here to approximate the Voronoi diagram

and the medial surface. Although this approach shows

some promise, it has not been demonstrated for more

complicated models, and might also result in over-

decomposition of bodies.

Shih and Sakurai present a mesh generation tool via

swept volume decomposition [25]. The algorithm works

on certain geometry that the paper demonstrates. However,

the process of swept volume decomposition consists of

swept volume generation and needs many regular boolean

operations, which may make the algorithm computationally

expensive.

There are also some decomposition algorithms proposed

in the domains of computational geometry and feature

recognition. Chazelle introduces the technique to decom-

pose non-convex objects into convex components [26].

The disadvantage of this approach is that the shapes of

volumes decomposed can be arbitrary and the algorithm

doesn't recognize the rationale of ®nite element meshing.

Woo suggests the process called ASV (Alternating Sum of

Volumes) to extract a unique series expansion of the object

in terms of convex components with alternating signs [27].

The disadvantages of ASV are that the computation of

convex hulls is expensive and the decomposition may result

in awkward shapes. Sakurai proposes a feature extraction

method based on so called ªmaximal volumesº [28]. In this

method, arti®cial edges are generated by intersecting

surfaces and minimal cells are then formed by grouping

edges and computing faces. Different combinations of

these cells form maximal volumes. The extensive intersec-

tion of surfaces to generate minimal cells, and also the

combination of minimal cells to form maximal volumes,

are very computationally expensive. In the results demon-

strated, the types of geometry this algorithm can handle are

limited.

Feature recognition (FR) is the process of extracting

design or manufacturing information from a solid model.

Extensive research has been performed in the FR ®eld

[29±32]. This paper employs a FR technique to guide

decomposition for hexahedral meshing. There are four
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phases in this approach: Feature Determination to extract

decomposition features, Cutting Surfaces Generation to

form the cutting surfaces, Volume Separation to generate

separate volumes, and Meshing Algorithm Assignment to

match volumes decomposed with appropriate meshing algo-

rithms. This paper focuses on describing feature determina-

tion and volume decomposition; the last part has been

described in another paper [12]. The paper concludes with

some decomposition and meshing results.

2. Volume decomposition and meshing

Consider how a human expert hex-meshes a CAD model.

If the geometry is too complicated to mesh automatically, it

is decomposed into smaller pieces, each of which is mesh-

able using some known automatic meshing patterns. A great

deal of meshing knowledge is usually employed to help

guide the decomposition process. Issues which are treated

implicitly by expert users are where to place decomposition

surfaces, whether the cutting leads to simpler, meshable

volumes, and whether there exists a better cutting solution

for getting higher mesh quality in less time. This process is

often heuristic-based, with few deterministic rules available.

In this research, we seek to identify heuristic rules that

can be used in the decomposition process, where heuristics

are based solely on geometric characteristics of the model,

independent of any particular meshing algorithm. In

general, the goal of this strategy is to identify and cut off

protrusion features in the model. While some general

knowledge about meshing algorithms could be used to iden-

tify other possible locations for decomposition, we choose

not to use that knowledge until the generic rules yield no

further decompositions. Any remaining unmeshable pieces

are left to the user for further, manual decomposition.

This approach has several advantages. Starting with a

strategy which is independent of meshing algorithms

reduces the number of special cases that are used in the

decomposition process, which increases both the decompo-

sition speed as well as the number of parts to which this

strategy can be applied. Allowing the use of some meshing

algorithm knowledge incorporates some of those special

cases, which can be helpful for decomposing parts with

speci®c well-known geometry. Since the goal is to decom-

pose the part into as many meshable pieces as possible,

rather than into 100% meshable pieces, the process can

serve as one of many tools in the decomposition process,

rather than the only tool for decomposition. From this

perspective, this tool reduces the amount of geometry the

user has to mesh by hand, rather than meshing a given model

fully automatically. This widens the domain of applicability

of this decomposition strategy, and reduces the model

complexity experienced by the user.

We have V as the operator representing the entire decom-

position procedure to obtain meshing features, which are

volumes matched with automatic hexahedral meshing

algorithms. B represents the original body. S is the set of

M volumes left at the end of the decomposition. Then we

have:

V�B� � S �1�

si [ S i [ �1;M� �2�
Then

si # B; i [ �1;M�

si > sj � f i; j [ �1;M� �3�

B � i � 1
XM
i�1

Si

where
P

is the operator of exclusive addition.

If C is the operator of the meshing algorithm assignment,

then

C�S� � T �4�

ti [ T i [ �1;N� �5�
where T is the set of volumes having a valid meshing

scheme assignment.

It is ideal if the automatic decomposition process yields

B �
XN
i�1

ti; ti [ T �6�

or, equivalently,

T � S �7�
That means all the volumes decomposed can be matched

with an automatic hex meshing algorithm. Certainly, Eqs.

(6) and (7) will always be true if we relax V to include

manual decomposition.

To measure the success of decomposition for meshing,

we introduce f as the automatic meshing ratio. f can be

de®ned based on either the volume ratio (f v) or the number

ratio (f n), where

fv � V�T�=V�B� �
XN
i�1

V�ti�=V�B� fn � N=M �8�

where V is the operator to calculate the volume. Both

measures are useful for measuring the success of decompo-

sition. The dif®culty of meshing the remaining volumes, i.e.

S±T, can depend on either or both, depending on the geome-

try.

Besides improving the meshability of a model, the quality

of mesh can be enhanced and the (computational) meshing

time can be reduced. The complicated meshing algorithms

that treat more versatile geometry tend to be more compu-

tationally expensive than simpler ones. For example, the

meshing speed of sweeping is approximately one tenth the

speed of mapping or submapping [29,34]. Through decom-

position, the geometry and topology of the volumes usually
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becomes simpler, thus it is possible for more of them to be

meshed with mapping/sub-mapping, which are less expen-

sive and produce better quality mesh. Decomposition allows

the use of the fastest possible algorithm given the geometric

constraints of the pieces resulting from the decomposition.

The same principle will hold once fully automatic hex

meshing algorithms are part of C .

3. Feature recognition approach

Generally, the meshing feature decomposer described in

this paper takes a solid model as the input and outputs a set

of volumes, some of which are recognized meshing features

(i.e. sub-volumes matched with appropriate meshing algo-

rithms). Among those are sweeping features, mapping/sub-

mapping features, primitive features, etc. The procedure is

shown in Fig. 1.

The features de®ned for the design and manufacturing

domains may not be appropriate for meshing. ªBossesº,

ªribsº, ªslotsº and ªkey-waysº are de®ned for design and

manufacturing functionalities. In meshing, geometries are

regarded as the same feature as long as the same algorithm

can be used to mesh them. Only an exclusive addition opera-

tion is well recognized and implemented for set operation to

join individual lumps of meshes. Negative volumes or a set

of volumes with overlapping regions have no direct value to

meshing. Since only positive features are meaningful in the

meshing domain, FR-based techniques applied to meshing

concentrate on protrusion features, which tend to be

bounded at least partly by concave transition zones.

Among the many feature recognition techniques, one

based on CLoops [32±37] is chosen as the foundation of

the feature-based decomposition technique employed in this

research. After identifying possible features, cutting

surfaces are generated based on the CLoops. These cutting

surfaces are used to decompose the model, thereby slicing

off the identi®ed features. The process is applied recursively

to the resulting pieces until no further decompositions are

made. This section focuses on describing the extended

CLoop FR technique.

3.1. CLoop de®nition

Based on the dihedral angle along the edge, an edge can

be classi®ed as Concave Edge (if the dihedral angle .1808),
Convex Edge (if the dihedral angle ,1808), Neutral Edge (if

the dihedral angle� 1808) and Hybrid Edge (if the dihedral

angle varies around 1808 along the edge) [36,37]. Gadh and

Prinz suggested an abstraction of CLoop for feature recog-

nition, where CLoop was introduced as a closed set of

linked edges with the same convexity [32]. The CLoops,

combined with rules, are used to extract both protrusive

features like ribs, bosses, etc. and depressive features like

holes and slots. For the purpose of decomposition, Liu and

Gadh extended the de®nition of CLoop to be an open or

closed link of edges by introducing PLoop and HLoop

[35,36]. The concept of PLoop and HLoop is relaxed further

and SLoop, a type of CLoop with mixed convexity, is intro-

duced to accommodate more classes of features such as ®llet

shapes [37].

Based on the convexity of edges, a CLoop is classi®ed as

[36,37]:

² Pure CLoop. A Pure CLoop (PLoop for simplicity) is a

closed link of edges of the same convexity. It can be

further classi®ed as Pure Concave CLoop, Pure Convex

CLoop, or Pure Neutral CLoop.

² Pseudo CLoop. A Pseudo CLoop (SLoop for simplicity)

is a closed link of edges of mixed convexity. The edges in

the CLoop can be neutral, concave, convex or hybrid.

² Hybrid CLoop. A Hybrid CLoop (HLoop for simplicity)

is an open link of edges of the same or mixed convexity.

Fig. 2 illustrates the three different kinds of CLoop. The

inclusion of SLoop and extension of PLoop and HLoop

allow for the de®nition and extraction of more kinds of

decomposition features that cannot be determined by the

previous de®nitions of PLoop and HLoop. In practice,

only a small set of SLoop or HLoop is good for decomposi-

tion. We set a threshold of the dihedral angle for those edges

that are convex or hybrid to be quali®ed as edges in a SLoop

or HLoop. Usually, convex or hybrid edges in a SLoop or a

HLoop are restrained to be edges with dihedral angle close

to 1808. In addition, a SLoop or HLoop is required to have

one concave or neutral concave edge inside the link at least.

CLoops have been used to de®ne four classes of shapes:

Protrusion, Blind Depression, Through Depression and

Bridge [36]. Meshing features are protrusive volumes,

therefore, shapes such as protrusion and bridge are
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recognized for decomposition. Negative features are not

decomposed for meshing since it is dif®cult to implement

general set operation on negative meshing primitives.

3.2. CLoop determination

The extraction of PLoops, HLoops, and SLoops from a

BREP solid is a graph searching procedure. Both PLoops

and SLoops are closed links of edges, while HLoops are

open links of edges. Specially, the algorithms used to iden-

tify PLoops and SLoops are very similar except for the

different requirement on convexity.

We de®ne G(e) as the edge graph of model B. A CLoop is

formed by linking edges sharing the required convexity in

the Graph G.

3.2.1. PLoop and SLoop identi®cation

The algorithm used to identify PLoops in a BREP model

is shown in Table 1. Clearly, this is a depth-®rst searching

algorithm. In essence, the procedure to determine SLoop is

the same as PLoop. The only difference is that there is a

different requirement on edge convexity in the loop. A

SLoop is formed by edges with varying convexity.

SLoops can de®ne some features that are impossible to

de®ne using CLoops and HLoops. For example, they can be

used to identify a ®llet-type feature. As shown in Fig. 2, two

SLoops are extracted, one of which bounds a ®llet-type

shape.

3.2.2. HLoop identi®cation

A HLoop is an open link of edges and needs to be

completed to form a closed cutting loop for decomposition.

The original edges in a HLoop must be combined with

neutral edges, and possibly with some edges from other

CLoops, to form a new PLoop. There are three steps in

HLoop identi®cation: ®nding the open link of edges (i.e.

the HLoop), traversing and generating neutral edges on

the lateral faces between the two ends of the HLoop, and

combining the edges to form a new SLoop.

The ®rst step of getting an open link of edges for HLoop

has similarity to the determination of PLoop and SLoop. For

PLoop and SLoop, a CLoop is formed when the traversal

path ends up with a cycle. For HLoop, it is formed when a

non-cyclic traversal path ends at a vertex where no more

successive edges with required convexity can be added into

that path. Usually, neutral edges generation and cutting

surface ®tting for HLoop is done at the same time. For

convenience, the determination of HLoop will be completed

in the later section, where cutting surface generation for

HLoop is detailed.

3.3. CLoop pool

All instances of PLoop, SLoop and HLoop constitute a

CLoop pool. Fig. 3 shows the CLoop pool for an example

model (note that some HLoops are not displayed in this

example). These CLoops can be classi®ed according to

their spatial relationship; four possible relationships are

observed:

Joint: CLoops (excluding HLoops) share edges or vertices.
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Table 1

PLoop ®nding algorithm

Every edge can be marked with a ¯ag ªunmarkedº, ªin progressº or

ª®nishedº

L is a list of edges

l is a list of edges which represents a CLoop

F holds a list of CLoops in the model M

Begin with an edge graph G(e)

Start with initializing all nodes of concave edges by marking them

with ¯ag ªunmarkedº

Initialize an empty list F

Initialize an empty ordered list L

For every node of a concave edge e that is ªunmarkedº

Do depth-®rst search by calling DFS (e)

Dispose of the list L

End For

End

Function DFS (n)

Mark n ªin progressº

Put n in list L

For every successive node of concave edge m of n (successive nodes

are all the adjacent nodes of node n except the node preceding n in the

traversal path)

Begin

If m is ªunmarkedº, then do DFS (m)

Else if m is marked with ªin progressº then

Initialize an empty list l

Copy nodes in L from m through n into list l

Put l into list F

Else if m is marked with ª®nishedº then

Do nothing

End if

End

Mark n with ª®nishedº ¯ag

Remove n from the list L

Function end

List F holds all PLoop in the model M

Fig. 3. CLoop pool (partial).



For example, in Fig. 3, CLoops c, d, e and f are

ªjointº to one another.

Intersected: It is between a HLoop and another CLoop

(PLoop, HLoop or SLoop). The involved HLoop

might be extended to check the relationship. An

ªintersectedº relationship is identi®ed when a

HLoop or its extension is intersected with another

CLoop. Fig. 4 shows an example of intersecting

between a HLoop and a PLoop (the HLoop is

extended so as to check the relationship).

Coplanar: Two CLoops share the same set of extending

surfaces (see Fig. 5(a) for ªcoplanar PLoopsº and

(b) for ªcoplanarº HLoops).

Disjoint: Two CLoops don't have any of the relationships

above. In the example of Fig. 3, CLoop a and b are

disjoint and either of them is disjoint to any one of

c, d, e and f.

Fig. 3 shows that CLoops are clustered. CLoops c, d e

and f form a cluster with four members. CLoops a and b

each form a cluster with a single member. CLoops in

different clusters may be grouped together for construct-

ing a set of cutting patches, while CLoops in one cluster

may be sorted to generate cutting surfaces separately. The

concept of a separator that is detailed in the following

section is introduced to facilitate the grouping and

sequencing of CLoops.

4. Constructing cutting surfaces

4.1. Separators

PLoop, SLoop and HLoop are retrieved from the edge

graph and a CLoop pool is built. CLoops in this pool are

then sorted and analyzed to form the pool of cuttable separa-

tors. A separator is one or more loops which can bound a

cutting surface (a cutting surface may be made up of a set of

adjacent cutting patches). Separators are formed from one or

more CLoops; the spatial relationship of CLoops is an

important factor in choosing which CLoop(s) will form

the next separator. There are typically many possible combi-

nations of CLoops to form separators, and the choice of

separators strongly in¯uences the quality of the decomposi-

tion. The following heuristic rules for generating separators

have been investigated:

² ªCoplanarº CLoops possibly form a single separator. Fig.

5 gives two examples of them, one for PLoops (Fig. 5a),

the other for HLoops (Fig. 5b).

² Among ªjointº CLoops, only one of them is chosen as a

separator in a single cutting stage. CLoop c, d, e and f are

joint to one another, as shown in Fig. 3. For the example

in Fig. 6, CLoop f is chosen to be a separator at Stage I.

Other CLoops like c, d and e are made cuttable during the

following stages.

² Among ªintersectedº CLoops, a PLoop or SLoop is

chosen over the involved HLoop as a separator in a single

cutting stage in order to have fewer partitions. Fig. 4

gives the decomposition result by choosing PLoop h

over HLoop g as the separator.

² A disjoint CLoop may serve as a separator. PLoop a and

PLoop b of the example in Fig. 3 above can each form a

separator. Their decomposition result is shown in Fig. 6.

All the available separators form a pool of choice at each

cutting stage. For non-binary decomposition, each separator

can be used simultaneously to generate a cutting surface,
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and the model is cut with many surfaces at one step. More

than two volumes are obtained per step from non-binary

decomposition. For binary decomposition, only one separa-

tor is used at each decomposition step. The old ªun-cutta-

bleº separators may become ªcuttableº on new volumes and

new separators could be uncovered from them. The new

ones together with old ones form the pool where separators

for the next cutting are chosen. There can be many criteria

for selection of the next separator to construct a cutting

surface with. For example, the simplest CLoop serves as

the separator. Or, choose the longest CLoop as the separator

instead.

The rules listed above, as well as the priorities used to

choose between them at any stage, are heuristic in nature.

Further investigation is ongoing. Besides these rules, the use

of meshing knowledge to judge the prioritization of CLoops

is being investigated.

4.2. Cutting surface formation

Cutting surfaces are constructed by ®tting a surface over a

separator. In many cases, there can be several good candi-

date surfaces to ®t over a given set of edges. Fig. 7 shows

two reasonable ®tting results for a single CLoop. Different

cuttings can result in signi®cantly different geometry and

can have a heavy impact on meshing. For example, in Fig. 8,

the decomposition of (b) results in swept volumes with

constant cross sections, while the decomposition of (a)

leads to two more complicated volumes with Bspline

patches, where the mesh quality deteriorates and usually

more time is needed to mesh them.

The proper choice of cutting surface is not determined

solely on the basis of the feature being cut from the remain-

ing part. In the decomposition shown in Fig. 9(a), the lower

portion of the part can be swept and will yield a good quality

mesh; however, this decomposition leaves an acute angle on

the upper portion, which will result in poor quality mesh in

that region. The decomposition shown in Fig. 9(b) is much

more acceptable. The upper portion will be swept with much

better mesh quality, at a modest penalty to mesh quality in

the lower portion of the model.

Various techniques are used for ®tting surfaces over

different types of CLoops in this research; these techniques

are listed in Table 2. This paper focuses on presenting

progress made on ªextendingº algorithms: ªnatural extend-

ing algorithmº for HLoop and ªnatural ®tting algorithmº for

PLoop and SLoop. As the name suggests, these algorithms

create cutting surfaces by extending surfaces already in the

model. Avoiding the introduction of extra geometry into the

model by using native geometry results in more natural-

looking features, and leads to higher ef®ciency during the
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Table 2

Types of surface ®tting algorithms used for various types of CLoops.

Type of CLoop Surface ®tting algorithm

PLoop Natural ®tting, best ®tting

SLoop Natural ®tting, best ®tting

HLoop Natural extending, best ®tting



decomposition process; unnecessary surface merging is also

avoided. ªBest ®ttingº is a non-extending algorithm and is

addressed brie¯y in this paper as well.

A ªnaiveº extending strategy can be easily envisioned: i,

extending and intersecting a face adjacent to each edge in

the CLoop with other faces in the model to generate arti®-

cial edges; ii, trimming the arti®cial edges by intersecting

the arti®cial edges themselves; iii, sorting the trimmed

edges and discarding useless edges; iv, forming loops by

combining relevant arti®cial edges with original edges in

the CLoop; v, covering the loops with correspondent surface

geometries of the extending faces. Only intersections that

lead to arti®cial edges useful for building the cutting surface

are regarded as necessary intersections. The ªnaIÈveº

approach may lead to massive ªuselessº intersections. The

two extending algorithms developed in this research are

aimed at addressing this issue. ªUsefulº intersections are

traced and performed, incrementally and locally, and

ªover-cuttingsº can be largely avoided too.

4.2.1. Natural extending

Natural extending is used to construct cutting surfaces for

separators composed of one or more HLoops. Fitting a

surface over these types of separators is more complicated

than ®tting PLoop- and SLoop-based separators because

neutral edges must be formed to close the HLoop before a

cutting surface can be formed.

In a previous effort, only planar surfaces were used for

generating the remaining edges and closing HLoops; this

method is referred to here as a simple extending algorithm.

In many cases, the cutting surfaces generated by the simple

extending algorithm did not yield good results for decom-

position and meshing. In those cases, a natural extending

algorithm often produces better results [38]. Fig. 8(b) shows

an example of decomposition generated by the natural

extending algorithms.

The natural extending algorithm generates arti®cial edges

by traversing surfaces between two ends of a HLoop. Along

a HLoop, every extending face of an edge in the HLoop is

extended one by one and then intersected with lateral faces

(faces intersected with extending faces) continuously. In the

meantime, they are self-intersected with one another. The

procedure is incremental, once for one extending face. A

succeeding extending face (along the HLoop) takes its turn

when the projection of the intersecting edge between this

extending face and the preceding extending face hits the

current lateral face. As a result, a lateral face is intersected

with more than one extending faces only when a succeeding

extending face takes the role of current extending face and

these extending faces must be adjacent (along the HLoop).

Curves are computed from these intersections and then

trimmed to yield arti®cial edges. Group the arti®cial edges

with corresponding original edges in the HLoop to form

face loops. Cutting patches are then generated by covering

the loops with the geometry of the corresponding extending

faces.

A lateral face can have multiple loops. If the intersection

between a lateral face and an extending face is only

involved with one face loop, the intersection is ªsimpleº

and the lateral face is a ªsimpleº face with respect to the

extending face. If all the lateral faces are ªsimpleº, we have

only one traversal thread throughout the whole procedure. A

ªnon-simpleº intersection has multiple intersections thus

has multiple beginning points for the following traversal.

Fig. 10 shows several cases of lateral faces that can be

ªnon-simpleº. The traversal path will be split into multiple

traversal threads when entering a ªnon-simpleº lateral face

and merged thereafter when leaving the lateral face. Edges

are trimmed and sorted during traversal path splitting and

merging. Fig. 11 illustrates the process of splitting and

merging on a ªnon-simpleº lateral face.

4.2.2. Natural ®tting algorithm

Fig. 12 shows a PLoop with six edges. Although there

could be a single surface that bounds all these edges, it

would not be an appropriate cutting surface for this

model. In this case, the appropriate cutting surface consists

of several patches and each is formed using one of the base

surfaces bounding the PLoop and two edges in the PLoop.

The formation of these types of cutting surfaces is referred

to as the natural ®tting algorithm [38], since it involves

®tting one or more natural (i.e. pre-existing) surfaces over

a PLoop.

The natural ®tting algorithm is illustrated brie¯y here: for

every edge e in the PLoop, there is a correspondent extend-

ing surface s. Choose an edge ei from the PLoop. Its extend-

ing surface is si. The extending surface of the edge ei21 that
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Fig. 10. Cases of ªnon-simpleº lateral faces.

Fig. 11. Traversal path splitting and merging.



immediately precedes ei is si21 and the extending surface of

the edge ei11 that immediately succeeds ei is si11. Curves are

created by intersecting si with si21 and si11 and then trimmed

accordingly to generate arti®cial edges, which form a new

face loop coupled with relevant edges already in the PLoop.

A cutting patch is then created to cover the loop; this cutting

patch shares the same geometry with the extending surface

si. Remove the edges used to create the cutting patch from

the PLoop and add the arti®cial edges just created into the

PLoop. The above operation of creating cutting patch is

resumed on the modi®ed PLoop. The procedure is recursive

until all edges in the PLoop have been consumed for new

patches. In the operation of generating cutting patches, three

cases are explored: (i), the neighboring extending surfaces

of the current extending edge are not equivalent; (ii), the

neighboring extending surfaces of the current extending

edge are equivalent; (iii), the cutting surfaces of the

involved extending edges are all equivalent. For the exam-

ple of case (i), usually, two curves are generated by inter-

secting the two neighboring surface pairs. They are trimmed

by self-intersecting and two relevant vertices of the extend-

ing edges.

Fig. 12 gives an example that uses the natural ®tting

algorithm for cutting surface generation. It shows the

exact sequence of cutting patches generation. Three planar

patches are formed and the cube at the corner is successfully

cut off. The two sub-volumes are kept prismatic and can be

easily meshed by the sweeping or the sub-mapping algo-

rithms.

Fig. 13 shows another example of using the natural ®tting

algorithm. Two planar patches and one cylindrical patch are

formed. The corner object is cut off smoothly, and the

decomposition result is very intuitive.

4.2.3. Best ®tting algorithm

In some cases, neither the natural extending nor the

natural ®tting algorithms are appropriate for ®tting a surface

over a separator; Fig. 9 shows an example where extending

algorithms are not preferable. In this case, we use a ªbest ®tº

surface to cover the separator. Among the various techni-

ques for covering separators, Best ®tting is the least reliable,

as it requires the ®tting of a surface over an arbitrary link of

bounding edges and signi®cantly more computation for

edge and surface generation. In general, this can be dif®cult.

Therefore, when choosing a method of those listed above to

use when covering a separator, best ®tting is chosen only if

the other techniques fail to produce appropriate cutting

surfaces. A trial version of a ªbest ®tº algorithm is devel-

oped but the advanced investigation is still underway.

5. Implementation and results

The algorithms described above have been implemented

in the CUBIT mesh generation toolkit [29]. CUBIT provides

tools for importing, modifying and saving geometry in the

ACIS format [39], as well as tools for generating hexahedral

and tetrahedral meshes.

The geometry in Fig. 14 was decomposed then hex

meshed automatically. No user interaction was required

for further decomposition or for specifying meshing algo-

rithms. Thus, both f v and f n are 100%. The scaled jacobian

quality metric for this mesh [40] varies between 0.51 and

1.0, which is well within acceptable bounds. In this case, our

method decomposes an unmeshable solid into a set of mesh-

able volumes fully automatically.

Another example of how automatic decomposition is

applied to the hex meshing process is shown in Fig. 15.

Here, the original part is cut into 17 pieces automatically.
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Fig. 12. Sequence of cutting patches generation with natural ®tting algo-

rithm.

Fig. 13. Another example for natural ®tting.

Fig. 14. Test part (left); after automatic decomposition and meshing (right).



After identifying the unmeshable pieces, using the algo-

rithm described in [12], 14 more cuts are performed manu-

ally; the entire model can then be meshed automatically.

The resulting model and mesh are also shown in Fig. 15.

In this example, f v and f n are 0.19 and 0.71, respectively.

The scaled jacobian for this mesh varies between.022 and

1.0, which again is within acceptable limits.

Note that in this example, emphasis is placed on obtaining

a mesh quickly rather than minimizing the number of

volumes; if the latter were important, the ®ve manual cuts

could be replaced with fewer cuts, and the number of result-

ing volumes would be smaller. This example shows that

automatic decomposition can be used even when it does

not fully decompose the model into meshable pieces; rather,

it performs the decompositions it can, leaving further

decomposition for the user. In this context, this tool reduces

the time to mesh by performing some decomposition auto-

matically that would otherwise be done by the user manu-

ally.

Figs. 16 and 17 show other parts decomposed automati-

cally. For the part shown in Fig. 16, f v and f n are 0.48 and

0.89, respectively. For the part shown in Fig. 17, f v and f n

are 0.08 and 0.56, respectively.

6. Conclusion

This paper presents the work on shape recognition and

volume decomposition to automatically decompose a CAD

0model into hex meshable volumes. There are four phases in

this approach: Feature Determination to extract a decompo-

sition feature, Cutting Surfaces Generation to form the

cutting surfaces, Body Decomposition to get the imprinted

volumes, and Meshing Algorithm Assignment to match

appropriate meshing algorithms to the volumes decom-

posed.

This paper employs Feature Recognition (FR) technique

to guide the decomposition in an intelligent way. Some

heuristic rules have been introduced to mimic the thinking

of human beings when handling complicated geometry for

meshing. Although there is still a lot of work to do, the

methodology proves to be effective and the results are

encouraging.
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Fig. 15. Example of decomposition and meshing. Original geometry (upper left); results of automatic decomposition (upper right); volumes requiring manual

decomposition (lower left); ®nal mesh (lower right).

Fig. 16. A test from Sandia National Laboratories.



There are some issues that are under further investigation.

The major consideration is to add more knowledge into the

system such as auto-meshing patterns to guide the decom-

position so that the decomposition is more thorough and the

result is more intuitive to meshing.
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