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a b s t r a c t

Mesh decomposition is critical for analyzing, understanding, editing and reusing of mesh models.

Although there are many methods for mesh decomposition, most utilize only triangular meshes. In this

paper, we present an automated method for decomposing a volumetric mesh into semantic

components. Our method consists of three parts. First, the outer surface mesh of the volumetric mesh

is decomposed into semantic features by applying existing surface mesh segmentation and feature

recognition techniques. Then, for each recognized feature, its outer boundary lines are identified, and

the corresponding splitter element groups are setup accordingly. The inner volumetric elements of the

feature are then obtained based on the established splitter element groups. Finally, each splitter

element group is decomposed into two parts using the graph cut algorithm; each group completely

belongs to one feature adjacent to the splitter element group. In our graph cut algorithm, the weights of

the edges in the dual graph are calculated based on the electric field, which is generated using the

vertices of the boundary lines of the features. Experiments on both tetrahedral and hexahedral meshes

demonstrate the effectiveness of our method.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Mesh decomposition (or mesh segmentation) is the process of
dividing a mesh into meaningful components. Over the last
decade, mesh decomposition has become an active research topic,
and it has provided a fundamental process for obtaining useful
information from an input mesh in many applications, such as
reverse engineering [1], shape analysis and understanding [2,3],
modeling [4], compression [5], collision detection [6], and skele-
ton-driven animation [7]. Today, there are many methods [8,9] to
decompose a mesh model. However, most of these methods aim
to process triangular meshes only.

With the development of meshing techniques, volumetric
mesh models have become widely used in many applications,
including physically based simulation, product quality evaluation,
and scientific visualization. As the magnitude of the volumetric
elements increases, it is necessary to decompose the mesh model
into several parts for local manipulation.

If the performance of the product does not meet a realistic
requirement during the process of numerical behavior simulation,
the product may need modification or addition of new parts. As
discussed in [10], reusing the pre-generated meshing semantic
data in existing products can reduce the time substantially. In
011 Published by Elsevier Ltd. All

.cn (S. Gao),
these applications, the volumetric mesh model needs to be
decomposed into semantic components to allow for convenient
copying and reuse. Fig. 2 shows an example of this process. The
models in (a) and (b) have been meshed into tetrahedral meshes.
If we want to reuse the interesting semantic feature in (c), we first
separate that feature from the original model (see (d)) and then
copy and paste the feature onto the new model (see (e) and (f)).
These operations make it unnecessary to re-mesh the whole
model and thus save substantial time during the simulating
process.

To directly edit a volumetric mesh, some elements may need
to be optimized to meet the requirement of numerical simulation
during the finite element (FE) analysis. The optimization process
is time-consuming if the model contains a large number of
elements. Generally, the affected regions are limited to some
local parts. Thus, we only need to optimize these parts locally. As
shown in Fig. 3, we select and separate the part from the original
model to change the middle component of a volumetric mesh
mechanical part. We then modify the part and optimize the
elements locally. In this context, it is significant to study
approaches to decomposing a volumetric mesh.

The objective of this paper is to develop a method that can
decompose the volumetric mesh into semantic components
required by the editing and partial reuse of volumetric meshes.
The decomposition method intends to satisfy the following
conditions: decompose the volumetric mesh in an automatic
way, guarantee the quality of the decomposed semantic compo-
nents, deal with a volumetric mesh with complex semantic
rights reserved.
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Fig. 1. Decomposition of the tetrahedral mesh of the turbo model.

Fig. 2. Tetrahedral mesh reused. (a) and (b) are two original CAD models. The

proposed method can separate the selected sematic component from the existing

volumetric mesh model (c), (d) and paste that component onto another volumetric

mesh model (e), (f).
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components, and provide reasonable computational efficiency. To
satisfy the above tasks, we first decompose the outer surface
mesh of a volumetric model into semantic features using surface
mesh segmentation and feature recognition techniques and then
decompose the volumetric mesh into the corresponding semantic
components by using the graph cut algorithm.

The remainder of this paper is organized as follows. Section 2
briefly reviews related work. Section 3 presents some notation
and an overview of the approach. The details of the approach are
described in Section 4. Experimental results are given in Section 5,
and conclusions to this paper are in Section 6.
2. Related work

Due to their wide range of applications, many 3D polygon
mesh decomposition algorithms have been studied over the last
decade. A review of mesh segmentation can be found in [8,9]. A
more recent survey of decomposition approaches appears in [11].
In [11], Chen et al. compare some recent segmentation algorithms
to ground truth based on several evaluation metrics.

Briefly, the decomposition algorithms can be categorized into
two classes based on different types of input models. The first
class segments natural graphical models into meaningful regions
that correspond to human vision. The second class aims at
processing engineering models.

Mangan and Whitaker [12] first adapted the morphological
watershed segmentation algorithm from the analysis of images to
the analysis of surface mesh. This method first finds the vertices
with local minimal curvature, then clusters nearby vertices using
the steepest decent approach. Katz et al. [13] use feature points to
segment the mesh hierarchically. Their method is invariant to the
pose of the model and can generate coarse levels and fine levels of
segmentation. Shlafman et al. [14] apply the k-means algorithm
to clustering the faces of the mesh and then to segment the mesh
into meaningful pieces. In [7] Katz and Tal present an approach to
improve this method to achieve hierarchical segmentation by
using fuzzy clustering. Their method can segment the model in a
top-down hierarchy. By adapting the mean shift, Yamauchi et al.
[15] propose a scheme for generating feature sensitive segmenta-
tion. Another hierarchical decomposition algorithm is presented
in [16] using a curved skeleton. Lai et al. [17] extend the random
walk method from an image to a triangular mesh and obtain an
efficient segmentation. The random walk-based algorithm pro-
vides results in comparable quality to other methods and is more
efficient. Skraba et al. [18] combine persistence-based clustering
with the Heat Kernel Signature function to obtain an isometric
invariant mesh segmentation. In [19], an intuitive user interface
(UI), called cross-boundary brushes, is introduced for interactive
mesh decomposition. This algorithm segments the mesh based on
cutting along an isoline of a harmonic field.

To segment the engineering models, Lavoué et al. [20] present
an efficient algorithm that uses curvature tensor field analysis for
the decomposition of arbitrary triangular meshes. Vierira et al.
extend region-growing techniques to segment the unstructured
noisy mesh and to extrude smooth surface. Hwan Kim et al. [21]
propose an algorithm that merges the over-segmented regions, to
refine the boundaries. Várady et al. apply the Morse–Smale
complex to decompose the mesh into regions [22]. In [18], Sunil
and Pande segment the sheet metal CAD model by classifying the
triangles into coarse and dense categories and then process them
by different methods. With certain modifications, the method in
[17] can also be used to process the engineering models. More
comparison of methods of CAD model segmentation can be found
in [23].

Although there have been many algorithms for mesh decom-
position, most of them concern surface polygon mesh. In [24],
Attene et al. describe an algorithm to compute a hierarchy of
convex polyhedra that tightly enclose a tetrahedral mesh. Their



Fig. 3. Editing a tetrahedral mesh directly. (a) The tetrahedral mesh model. (b) Select the interesting part and decompose that part from the original mesh model.

(c) Change the selected part and optimize the tetrahedrons locally. (d) Reconnect the edited part with the other parts. (e) The final model.

Fig. 4. Basic concepts. (a) Examples of surface elements, inner elements and

OBLF s. (b) Examples of form features and OBLF s of the features.
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algorithm clusters tetrahedrons hierarchically into near-convex
groups and works directly on the tetrahedrons of the mesh. A
limitation of their method is that the contact surface of adjacent
components is not considered. In this paper, we propose a
decomposition algorithm to process the volumetric mesh (tetra-
hedral mesh or hexahedral mesh), and our algorithm mainly aims
to solve decomposition in engineering models.
3. Concepts and overview

Let M be a volumetric mesh; we then define the following
concepts:
�
 An element of a volumetric mesh is a volumetric cell, such as a
tetrahedron or a hexahedron in a volumetric mesh. The
element is called a surface element if one of its faces has no
adjacent element. Otherwise, the element is called an inner

element (see Fig. 4).

�
 The element group, or group for short, is defined as the

volumetric elements set.

�
 The external surface mesh of M consists of the faces without

adjacent elements, denoted as @M.

�
 Form feature: we define a form feature as a semantic partial

shape that has engineering meaning [25]. The form feature
defined on the surface mesh @M consists of surface polygon
faces, while the form feature defined on the volumetric mesh
is a set of volumetric elements.

�
 The outer boundary lines of two adjacent surface form features

(abbr. OBLF) (see Fig. 4(b)) are the set of common edges of the
polygons between two features, F0 and F1.

�
 The oriented bounding box (abbr. OBB) is a type of bounding

volume used in computational geometry [26]. In this paper, we
use the OBB in constructing the splitter groups for
decomposition.

For an input volumetric mesh M, our decomposition method
consists mainly of the following steps:
1.
 Segment the external surface mesh of M into reasonable
regions, use the feature recognition techniques to identify
the surface form features, and group the corresponding surface
elements together.
2.
 Find the OBLF s of the features. For each OBLF, a splitter group
is constructed. Separated by these groups, the inner elements
are decomposed into disjoint groups, which are attached to the
surrounding features.
3.
 For each pair of adjacent features, we use the graph cut
algorithm to cut the splitter groups. For each splitter group,
we build an electric field by using the vertices of its corre-
sponding OBLF to compute the weights of the edges in the dual
graph and obtain the final result.

We will detail steps 2 and 3 in the following section.
4. Decomposition algorithm

In this paper, the input models of the algorithm are volumetric
meshes of engineering models. Let M be an original volumetric
mesh. We use G, Gsf, Gin, @M to represent the total elements group,
the surface elements group, the inner elements group, and the
external surface mesh of M, respectively. The goal of this section



Fig. 5. Decomposition process. (a) is the input tetrahedron mesh, while (b) shows the form features of the surface mesh and their OBLF s. The corresponding surface

elements of the features and the non-decomposed inner elements are shown in (c), while the surface elements attached to the OBLF s and their corresponding bounding

boxes are shown in (d). The splitter groups are constructed in (e). Separated by the elements of the splitter groups, the inner elements are decomposed into groups and

attached to their corresponding features (f). Finally, using the graph cut algorithm, we decompose the elements of the splitter groups and obtain the results, (g) and (h).

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is to decompose G into n semantic groups fGig, such that

G¼
[n�1

i ¼ 0

Gi,Gi \ Gj ¼ |ð8ia jÞ ð1Þ

4.1. Surface decomposition and feature recognition

As mentioned above, our method is an outer-to-inner method.
The first step is to decompose @M into semantic regions. In this
paper, the input model is a finite element model, and the quality
of the polygon faces of @M is often good. In this case, many
segmentation approaches can produce segments well. Further-
more, for engineering models, the boundary of each region of the
surface often consist of sharp edges (some adjacent regions may
have smooth blend boundaries). Thus, we adopt the method
proposed in [27] to decompose the external surface mesh of M

in our implementation. It should be pointed out that each
quadrilateral on the surface mesh of the hexahedral mesh should
be split into two triangles while performing the segmentation.
With these surface regions, the adjacent graph of the regions is
constructed. Then the graph-based method [27] is employed to
recognize the surface form features. In general, a predefined form
feature library is built. Because we aim at decomposing the
volumetric meshes, the inner side of the form feature should
occupy some volume space. Thus, the concave form features, e.g.
holes, are attached to the adjacent non-concave form features. In
our implementation, we also allow users to interactively define
the form features. Because the segmentation of surface meshes
and the techniques of feature recognition have been extensively
studied, we will cover the details in this paper. Fig. 5(b) shows the
surface form features of the tetrahedral mesh in Fig. 5(a).

4.2. Splitter group construction and inner elements partition

Suppose @M has been decomposed into a surface feature set
@M¼ fFig. It is obvious that every surface polygon face in @M has
its corresponding surface element in M. After @M is decomposed
into form feature combinations, the surface elements Gsf (as seen
in Fig. 5(b)) are grouped. Then, the remaining task is to
decompose the inner elements of M. In this step, we use the OBLF

s to guide the inner decomposition process.
To decompose the inner elements, all OBLF s of the adjacent

surface features are extracted first. Suppose li,j ¼ fekg is the OBLF of
two features Fi and Fj. Here, ek is an edge of the surface mesh. As
shown in Fig. 5(f), the closer the element eiAGin is to li,j, the less
certain is the group to which the element should belong. Thus,
there is a fuzzy elements region near li,j where the inner elements
are likely to be undetermined. Based on this analysis, we use the
OBLF s to construct the splitter groups in this step.

The algorithm of constructing splitter group gui,j
from li,j

consists of the following steps:
1.
 Find the surface elements whose edges attach to li,j. We denote
these elements as Sl (see elements in blue in Fig. 5(d)).
2.
 Build an OBB [26] Ol to bound Sl.

3.
 From one element in Sl, collect together the adjacent elements

that have at least one vertex inside Ol by applying the breadth-
first search algorithm, and add these elements to gui,j

.

4.
 Remove the surface elements from gui,j

.

The reason we use OBB to help construct the splitter groups is
that OBB is simple to compute and can surround elements that are
near li,j. Figs. 5(d) and (e) show the results of the OBB and the
splitter groups, respectively.

As illustrated in Fig. 5(f), the splitter groups Gu ¼ fgui,j
g are like

bars that divide Gin into disjoint subgroups G0 ¼ fg0mg. Combined
with Gu, these groups form a partition of Gin. We categorize each
g0m into its corresponding adjacent surface feature.

4.3. Decomposition of splitter groups based on electric flux

In the previous steps, the outer and inner elements, except
those of splitter groups, are decomposed into corresponding
features. To exactly generate the decomposition of G, these
splitter groups need to be decomposed.

As described above, a splitter group gui,j
is generated from its

corresponding OBLF, li,j. As a result, the cutting surface of gui,j

should stay consistent with li,j. A natural idea is to use li,j as the



Fig. 6. A model with two features (a). The contact surface of these two features is a saddle surface. Part (b) shows the decomposition result by applying the minimal area

rule directly. The result is not very meaningful. Using the minimal flux rule, we can get a better result, shown in (c).

Fig. 7. A model with two features. The base surface of the feature in red is a spline surface (a). Using the proposed algorithm, we get a consistent decomposition with the

base surface (see in (b)). Part (c) shows the cutting surface of the two features. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

Fig. 8. Electric flux. (a) Flux on a surface. (b) Flux on the contact face elements

ek�1 ,ek .
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boundary to construct a minimal surface for cutting gui,j
. However,

for a mesh model, li,j consists of discrete straight lines, and it may
be very complex. As shown in Fig. 7, the contact surface of two
features is a spline surface. Directly constructing such a minimal
surface from the OBLF may be very difficult and impracticable. In
its discrete form, this solution can be represented as follows: find
a cutting surface that divides the splitter group into two sub-
groups and the sum area of contact faces is minimal. However, as
shown in Fig. 6(b), if the minimal area rule is applied directly to
the splitter group, the decomposition result is not as good as
expected. To avoid this result, we develop the minimal flux rule in
this section. We first introduce the electric flux on the volumetric
mesh as follows.

Electric flux on volumetric mesh: Suppose there is an elec-
trified curve l in R3 whose charge is uniformly distributed along
this curve. The electric field E of a point OAR3 can then be
expressed as

E¼

Z
l

r
4pe0r3

rdl ð2Þ

where r is the charge density and a constant, and r is the
position vector from dl to O (as shown in Fig. 8). Given a surface
S with a boundary l, the electric flux FS of S is

FS ¼

Z
S

E � dS ð3Þ

Apparently, there are many surfaces whose boundaries
contain l, and we denote the surface set as SðCÞ. Each surface
has its corresponding electric flux F. In SðCÞ, there is a bounded
surface Smin, subject to

FSmin
¼ min

Si A SðCÞ
fFSi
g ð4Þ

which we regard as the minimal flux rule.
As shown in Fig. 8, suppose S is a cutting surface of a

volumetric element group; S is then composed of piecewise
planes ffkg. Here, each fkAS is the common face of two
elements (see Fig. 8). Let V ¼ fvig be the vertices of the
corresponding OBLF of S. In the discretization, viAV is
regarded as a unit point electric charge with quantity e. The
discrete form of Eq. (2) can then be written as

E¼
X

vi AV

e
4pe0r3

i

ri ð5Þ

and the flux Ffk
AS of fk approximates to

Ffk
¼
X

vi AV

e
4pe0r3

i

ri � nfk
AðfkÞ ð6Þ

where ri is the position vector from vi to the barycenter of fk,
nfk

is the normal of fk, and Að�Þ is the area function that is used
to compute the area of fk. Thus, the discrete form of Eq. (3) is
written as

FS ¼
X
fk AS

Ffk
ð7Þ

Now, we apply the minimal flux rule to decompose gui,j
. The

goal is to find a cutting surface with minimal flux to partition into
two reasonable disjoint element groups, g0i and g0j. In this step, we



Fig. 9. Decomposition of a model into two components. Part (a) shows the splitter

elements groups and (c) shows the electric flux model. Part (b) is the decomposi-

tion result.

Fig. 10. Postprocessing for overlapping groups. Part (a) shows that g0 and g1

overlap. After decomposing g0, we get (b). When we decompose g1, we obtain (c).

As shown in (d), the subsets S1 and S2 of the overlapping parts have two owner

features, while S0 has only one. Check the owner feature of the surrounding

surface features of S1, and assign the elements to F1. A similar operation is applied

to S2. Part (e) shows that the surrounding component of S3 is F1 but not F0; then, by

assigning S3 to F1 we obtain the final result, as shown in (f).

Fig. 11. A model with two close non-adjacent features. (a) Two OBB s intersect.

(b) The splitter groups overlap. Parts (c) and (d) show the decomposition results.
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formulate the cutting problem as a graph partition problem. We
first construct the dual graph D¼ ðN,EÞ of gui,j

. In D, the node
nei

AN corresponds to the elements eiAgui,j
, and there is an edge

between two nodes if and only if they are face-adjacent. We use
the electric flux generated by the vertices of li,j as the weight of its
corresponding edge in D. As a result, this problem turns out to be
the minimal cut problem of the network flow [28, chap.26].

It should be noted that two other nodes need to be added to
the graph: the source node ns and the target node nt. Recall that
gui,j

is a splitter group between the two determined groups, gi and
gj (Fig. 9). If the element eiAgui,j

is face-adjacent to gi, then an
edge is added between nei

and ns to the dual graph D. The same
operation is applied to nt. In fact, D is an undirect graph. The
weight w(i, j) of the edge between two nodes nei

and nej
is

defined as

wði,jÞ ¼
jFfk
j if nei

,nej
ans,nt

1 others

�
ð8Þ

where fk is the common face of ei and ej. Here, we ignore the sign
of Ffk

and take its absolute value, because it may be negative, as
computed by Eq. (6). Then, by applying the max-flow-min-cut
algorithm [28, chap. 26] to D, two separated groups g0i and g0j are
obtained. Finally, combining these groups with gi,gj, we obtain
the decomposition result of M. One can see that the graph cut
method is similar to the corresponding method for surface
polygon mesh segmentation [7,29], but due to differences of
source data and aims, certain issues must be resolved. As
presented above, the volumetric mesh is more complex, espe-
cially the computation of the weights.

From Eqs. (6) and (7), we can see that the minimal flux
surface is a weighted minimal area surface. The weight is
determined by the electric field and the normal of the face. The
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closer the faces to the OBLF s are, the larger the corresponding
weights. Moreover, as shown in Fig. 6(c), the cutting surface is
more approximate to the saddle surface than the cutting
surface of Fig. 6(b) when the minimal flux rule is applied.
4.4. Postprocessing for overlapping groups

As mentioned in Section 4.2, the splitter groups generated
by applying the OBBs of OBLF s may overlap (see Fig. 11) if two
non-adjacent features are very close. In this case, these over-
lapping groups need postprocessing.

In the decomposition of the splitter groups, we first use the
minimal flux rule (Section 4.3) to decompose each group. After
that, some elements in the overlapping group may be assigned
to more than one feature (see S1 and S2 in Fig. 10).

Postprocessing for overlapping elements consists of the
following steps:
1.
Tab
List

num

dec

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fi

Fig
colu
Group the elements of the splitter groups into single con-
nected sets by pre-assigned owner features.
le 1
of computation time and the quality of the decomposition results. Ne is the

ber of elements. Nf represents the number of features. T is the time of

omposition and qd shows the comparison of the area with the minimal surface.

Ne Nf T (s) qd

g. 1 90,468 5 4.12 0.87

g. 7 106,422 2 18.188 0.91

g. 11 50,492 3 0.400 0.95

g. 12(a) 44,764 3 7.344 0.85

g. 12(b) 51,459 3 2.094 0.78

g. 13 44,216 15 0.805 0.93

g. 14(a) 45,718 2 5.857 0.88

g. 14(c) 45,718 5 2.703 0.80

g. 15(a) 35,004 4 0.531 0.87

g. 15(c) 5036 4 0.049 0.82

g. 16 161,096 7 3.655 0.86

g. 17 47,880 4 1.090 0.81

g. 19 33,000 7 0.328 1

g. 20 98,254 25 1.097 1

. 12. Examples of our method for various tetrahedral mesh models. The first column

mn shows the cross-sections of the decomposition results. The third and the fourt
2.
sho

h co
If the elements of the set have more than one owner features
and they are adjacent to one surface feature, then assign this
feature as their owner feature.
3.
 Check the owner features of the surrounding elements for each
set. If these features are the same, then assign the feature as
the owner feature of the set.

5. Implementation and results

We implement our algorithm using Visual Cþþ 2008 with
OpenGL. Because the topological relationship of the volumetric
ws the surface form features of the volumetric mesh models, while the second

lumns show the volumetric features of the results.

Fig. 13. A bearing model with 15 features.



Fig. 15. Decomposing a model with different size of elements.
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elements is more complex than that of the polygon mesh, we
extend the Compact Half-face [30] data structure to represent the
volumetric mesh, to support the decomposition process. Our data
structure constructs the linking information between different
dimensions (0D, 1D, 2D and 3D) and it allows us to access
information without traversing the mesh.

We tested our method on many volumetric models, and the
results were satisfactory. In Table 1, we show the running time
and additional data for our method. The test were performed on a
PC with Core 2 Dual 2.4 GHz and 4.0 GB RAM in a single thread.

We compare the areas of the cutting surface with that of the
minimal surface of the OBLF s. Suppose a mesh contains n cutting
surfaces after decomposition; Ai is the area of the cutting surface
of two features, and Am

i is the area of the corresponding OBLF. We
compute the closeness to the minimal surface qd as follows:

qd ¼ 1�
1

n

Xn�1

i ¼ 0

Ai�Am
i

Am
i

ð9Þ

Because it is difficult to build an exact minimal surface of a closed
curve, we first triangulate the closed curve and then use the areas
of the triangles to approximate Am

i in our implementation.
Numeric data are listed in Table 1.

Fig. 12 shows two examples with different intersections of the
features. In Fig. 12(a), the green component has two neighbors
and two OBLF s. One OBLF lies on a plane, and the other does not.
Both cases are decomposed well. The form features of
Fig. 12(b) are defined by the user. Fig. 13 shows the decomposi-
tion of the bearing model with 15 features. We can see that our
method can decompose such a complex model well.

The decomposition result of a turbo model is shown in Fig. 1.
The base surface of the sheet features is a spline surface in the
original model. Our method can decompose the model well and
can generate a consistent decomposition with the boundaries.
Another similar model is shown in Fig. 7.

Fig. 14 shows an example of decomposing a mesh in different
ways. As shown in Fig. 14, the OBLF s of two features in (a) lie on
the same plane while those in (c) do not. In the second case, it is
Fig. 14. Using different ways to decompose a model.
difficult to construct a surface that can directly cut the features.
However, by using the proposed method, good decomposition
results for both cases are obtained.

Our method can generate similar decomposition results with
different sizes of the elements. In Fig. 15, the size of the elements
in (c) is two times the size of the elements in (a). The data in
Table 1 demonstrate that the decomposition results are very
similar, although their sizes are different.

Fig. 16 shows a decomposition result of a complex model with
seven features. The two surface form features that contact the
green feature are selected manually. Then, applying the proposed
method, we decompose the model into seven components.

Figs. 19 and 20 show some examples of hexahedral meshes. In
Fig. 20, the hexahedral gear model contains 25 features and has
been successfully decomposed. From these figures, it can be seen
that if the elements are attached to the contact surfaces between
the form features, our method can generate consistent decom-
position with these surfaces.

A model with two intersected cylinders is shown in Fig. 17. In
this model, four surface components meet at a single point. Thus,
four splitter groups overlap. Using the postprocessing described
in Section 4.4, we get the result in Fig. 17(d).
5.1. Discussion and limitations

Currently, we are using the method presented in [27] to
segment the surface mesh and to recognize the surface form
features. It seems that the proposed method cannot always
generate the most reasonable decomposition result. As shown in
Fig. 5, the model may have another decomposition result, which
would be that the intersection region of the cylinders belongs to
the form feature in red. This result happens because the ration-
ality of the decomposition results depends on the feature recog-
nition method we used. To make our approach more practical, the
feature recognition method needs to be improved.



Fig. 16. A complex tetrahedral mesh model with seven features.

Fig. 17. The decomposition of the intersect on cylinder model. (a) The model with

four form features. Part (b) shows four OBB s and (c) shows the corresponding

splitter groups. Part (d) is the result.

Fig. 18. (a) The decomposition result using our method. (b) Another possible

decomposition result.

Fig. 19. The decomposition of a hexahedral mesh model with seven features. This

model is generated by CUBIT.
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For a given surface feature, there may be various decomposi-
tion results. For example, Fig. 18 shows two decomposition
results of the given surface feature in green. Our method can
generate the decomposition result that the weighted area of the
splitting surface is minimal, but the most reasonable result
cannot always be guaranteed. Perhaps domain knowledge could
be incorporated into our method for a better result.
6. Conclusions

In this paper, we have presented an effective approach for the
automated decomposition of a volumetric mesh. In our approach,
a tetrahedral or a hexahedral mesh model can be automatically
decomposed into semantic components by first segmenting the
outer surface mesh into semantic features and then obtaining the
semantic features, consisting of volumetric elements, by employ-
ing the graph cut algorithm. The characteristics of the proposed
approach include:
1.
 The quality of the decomposed semantic features, consisting of
volumetric elements, is guaranteed by using our graph cut
algorithm.



Fig. 20. The decomposition of the gear model. (a) The model has 25 features. Part

(b) shows the cross-section of the decomposition.
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2.
 The decomposed semantic features can be complex predefined
features with complicated boundary surfaces and curves.
3.
 The method is quite efficient and can handle both tetrahedral
and hexahedral meshes.

Compared to the method in [24], our method begins the
decomposition with the surface mesh and feature recognition
because the form features are well-defined in engineering models
and these form features contain important semantic meanings in
the engineering field. The proposed method also considers the
boundaries of the adjacent features, which makes the decomposi-
tion result consistent with the boundaries.

As discussed in Section 5.1, the rationality of the decomposi-
tion depends on the form features. We will improve the adopted
feature recognition method so as to make our approach more
practical. Another possibility for future work is to study the
validation of the decomposition of the volumetric mesh with
complex form features.
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