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Summary. In this work, we present a pen-based user interface (UI) that
makes manual geometry decomposition easier and helps reduce user time spent
on geometry decomposition for hexahedral meshing. This paper presents the
first attempt to apply a pen-based UI for geometry preparation for mesh
generation. The proposed UI is more natural, intuitive, and easier to use
than existing interfaces such as Window-Icon-Mouse-Pointer and command-
line interfaces. The pen-based UI contains the following features: (1) drawing
freeform strokes, (2) fitting and aligning strokes to CAD geometry automati-
cally, (3) creating cutting surfaces, and (4) performing various tasks including
webcutting through gestures. The proposed pen-based UI has been tested on
a few models to demonstrate its effectiveness in decomposition, defeaturing
and controlling mesh orientation.
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1 Introduction

Manual geometry decomposition is one of the most time-consuming steps in
the mesh generation process. As shown in Fig. 1, geometry decomposition
dominates time spent during hex-meshing tasks at Sandia National Lab. In
order to perform geometry decomposition in existing preprocessing / mesh-
generation tools (e.g. CUBIT, TurboMesh), users have to either select an
appropriate command via a Window-Icon-Mouse-Pointer (WIMP) Graphical

†Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company for the United States Department of Energy’s National Nu-
clear Security Administration under contract DE-AC04-94AL85000
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User Interface (GUI), or type the command in the command-line interface
(CLI). Though these traditional interfaces are powerful, they are cumbersome
to a novice user.

Fig. 1: The user time spent for various tasks in mesh generation process at
Sandia National Laboratories [1].

The decomposition of models into meshable geometries has received a great
deal of attention due to the limitations of current hexahedral meshing algo-
rithms. The practical approach is to manually decompose the complex geom-
etry into meshable regions. These meshable regions are then imprinted and
merged before performing surface and volume meshing. The surfaces of these
regions are meshed using existing algorithms such as paving, mapping, and
sub-map [2]. Then volume meshing schemes such as sweeping (which requires
specifying source and target surfaces) and mapping are used to mesh the
sub-domains.

The pen-based UI proposed in this paper improves the interface of decom-
position operation in order to make the manual decomposition process more
efficient. A recent trend in computer-aided engineering software is moving to-
ward more natural and accessible interfaces, of which pen-based interfaces are
a prime example. In the early design stage, pen-based interfaces that use a
stylus pen and tablet have already been playing an important role and have
been used in freeform styling design. However, deposit its potential, pen-based
UI has not been commonly utilized in the engineering analysis. In this paper,
the benefits of pen-based interfaces are brought to engineering analysis tasks
by developing a new UI for easier and faster manual geometry decomposition
for hexahedral meshing as shown in Fig. 2.

This work is the first attempt to apply pen-based interface in mesh gen-
eration and is in its early development stage. More pen-based functions will
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be implemented in the future. The overview of the proposed UI is as follows.
The program first takes freehand input as sequences of screen coordinates.
The freehand inputs are then re-sampled and smoothed. The processed input
point set are then identified as one of the three types: lines, circles, or splines.
The program then fits appropriate 1D geometry entity to each input according
to the type. Cutting surfaces are created by sweeping the 1D geometry entity
in a given sweeping direction. The solid model is then decomposed using the
cutting surfaces.

Fig. 2: Decomposing a model with the proposed pen-based UI.

The rest of the paper is organized as follows: Section 2 discusses the previ-
ous related works. Section 3 covers the beautification and snapping algorithms
to process the freehand inputs. In Section 4, we describe how to create cutting
surfaces for webcutting [3]. Section 5 includes results that illustrate decom-
position targeting better mesh quality, controlling orientation of mesh and
defeaturing for hex meshing.
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2 Related Work

2.1 MARK-IT

The approach of Yang et al. to improve user interface (UI) with MARK-
IT [4] successfully simplifies the WIMP GUI as shown in Fig. 3 and saves
user time by avoiding switching among different panels in a conventional GUI
interface. Decomposition commands are executed by selecting entities and
drawing a corresponding mark with the mouse. MARK-IT covers over 50
CUBIT operations with different marks. To help users in drawing a correct
mark, a label appears by the cursor to display the associated command. When
a user needs to input a value, MARK-IT provides a “virtual slider” that can
be dragged to adjust the value.

MARK-IT shows the potential of a marking interface that is integrated
with a complex meshing system such as CUBIT. MARK-IT avoids unneces-
sary movement of the mouse by improving access to commands and opera-
tions. However, it does not reduce the time spent in the manual decomposition
process.

Fig. 3: Commands shown in MARK-IT interface [4].

2.2 ITEM

CUBIT offers the Immersive Topology Environment for Meshing (ITEM) [5],
a wizard-like environment that uses the approach used by [6] to determine
the possible cutting surfaces. First, all the curves that form a dihedral angle
less than an input value (default is 135 degrees) were collected. Second, a
graph-based algorithm was used to determine all the closed loops or the open
loops that can be closed using a boundary edge. Third, all the surfaces that
bound the loops were collected. Fourth, extensions of the collected surfaces
were used in defining the cutting surfaces.

The extensions of the surfaces are presented as suggest cutting surfaces
to users. Fig. 4 shows some of the cutting surfaces suggested by ITEM. How-
ever, those suggested cutting surfaces might not result in a meshable model.
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The user has to search through the available options and make meaningful
selections if exists. If there are no meaningful cutting surfaces, then the user
has to use CLI or GUI to manually create the desired cutting surfaces. Thus,
time-consuming manual decomposition operations are still required.

Fig. 4: Suggested cutting locations provided by ITEM.

2.3 Pen-Based Interface

Numerous researches have focused on using pen-based interface to create
3D models. Free-form surface generation or model creation systems such
as [7, 8, 9] reconstruct a 3D model or surface from 2D sketch inputs. The
template-based system proposed by Yang et al. [10] applies sketch recognition
algorithms to match points and curves to the given 2D templates. Kara and
Shimada [11] use computer vision techniques to align a template with an input
sketch for users to deform a model. By tracing over the sketch, user can simply
draw the new shapes on the model for deformation. Kho et al. [12] use strokes
to define a free-form skeleton and the region of the model to be deformed.
Nealen et al. [13] first detect an object’s silhouette, and then let the user
create new features or modify the existing one by sketching an approximate
shape onto the model. Cheutet et al. [14] allow the user to directly operate on
an object by modifying strokes with a stylus pen. The gesture based interface
used by Teddy [7] and [15] uses user strokes for operations such as extension,
bending, and other modification functions. An optimization-based algorithm
is used to determine the depth of 2D sketch vertices in the work presented
by Masry et al. [16]. It constructs a 3D wireframe shape from a 2D freehand
input for a physical simulation.
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Though pen-based interfaces have many contributions in the CAD mod-
eling field, their advantages have not been applied in geometry preprocessing
for hex meshing.

3 Drawing, Beautification and Snapping of Freehand
Inputs

The proposed UI interprets the user’s freehand input as a “hint” in order
to guess the intention and suggests the best matching result. It solves the
problems of inaccuracy and repeatability of freehand input strokes by beau-
tifying them with re-sampling, smoothing filters and geometric fitting to 1D
entities, and then snapping the 1D entities by offsetting and overlapping al-
gorithms. The user draws a freehand input P , then the input is re-sampled
and smoothed to P̃ . P̃ is represented as a 1D geometric entity C(t) such as a
line, a circle, or a spline. In the future implementation, the system will search
on the object surface for edges of the same geometry type and calculate the
distance between the matching edge and C(t). C(t) will then be snapped as
an offset or overlap of the closest edge.

Another feature of the proposed UI is using gestures for easily access com-
mands. Currently, ten gestures can be recognized by the systems. The user
can draw gestures to execute the linked commands.

3.1 Drawing on Object Surfaces

The users intentions are either to create 1) a geometric entity, or 2) to spec-
ify an operator that works on the geometry entity. In the case of geometric
entities, the intensions are to create 1D entity of one degree (e.g. line, poly-
line), two degrees(e.g. arc, circle, ellipse, parabola), or higher degrees(e.g.
cubic splines, Bezier, NURBS). However, currently only lines, arcs, circles,
and splines can be identified. The intended operators generally work on the
1D entities or can operate on 2D entities (e.g. cutting surface). The operators
that work on 1D entities include alignment, trimming, offsetting, extending,
sweeping. The operators that work on 2D entities include webcutting using
a cutting surface. These operators are specified via gestures as shown in Fig.
5 (the dots on the gestures indicate the starting points) or key shortcuts. As
shown in Fig. 6, the gesture can still be recognized even the directions and
sizes are different from the template. Currently, a subset of operators are im-
plemented and linked with the gestures, and rest of the gestures will be linked
in the future with other advanced operators.

3.2 Beautification: Resampling, Smoothing and Geometric Fitting

The proposed interface uses three steps to beautify freehand inputs: 1) re-
sampling, 2) smoothing, and 3) geometric fitting. Resampling will uniformly
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Fig. 5: Gesture set.

Fig. 6: An example of alpha gesture recognition. The program is able to rec-
ognize the incurrate alpha gestures correctly though they are in different sizes
and drawing directions.

distribute the points carried by the freehand input. Smoothing removes noise
while geometric fitting matches the freehand input to an intended shape such
as a line, circle, and spline.

A freehand input is noisy due to the hand control of a user as well as
sampling errors caused by stylus and tablet. The number of samples in a
given input stroke depends on the pen speed (i.e. point density is inversely
proportional to the users pen speed) and varies among devices. The system
needs to re-sample the input to obtain data points uniformly spaced along the
stroke before Laplace smoothing [17] can be applied to remove noise from the
inputs. The noisy freehand input is replaced with a re-sampled and smoothed
stroke, shown in Fig.7(a) and (b), respectively. The third step is to fit the

(a) Before smoothing. (b) After smoothing.

Fig. 7: Smoothing the freehand input.
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smoothed inputs to common predefined shapes, such as line segments (Fig.
8(a)), circles (Fig. 8(b)), and splines (Fig. 8(c)), if they match. We define a set
of tolerances to determine how a stroke should fit to each predefined shape.
This tolerance is defined as the ratio of the length between the endpoints
of the stroke, Llength and the actual curve length of the stroke Lo. If the
tolerance is greater than 0.99, then the stroke is fit to a line segment. If the
tolerance is less than 0.06, then the stroke is fit to a closed circle. We assume
that when the user would like the freehand input be fit to a circle with radius
r, the length of the input Lo is close to 2πr and Llength is within 0 to r/3 as
shown in Fig. 9. Otherwise, the stroke is returned as a spline as shown in Fig.
8(c).

(a) (b) (c) (d)

Fig. 8: Freehand inputs are fitted to (a) a line segment; (b) a circle; (c) an
arc; (d) a spline.

Fig. 9: Snap a freehand input to a circle. Thick solid line represents a freehand
input, which will be fitted to a circle shown with a dash line.

3.3 Identifying Candidate Edges and Snapping

In this section, we describe how to snap 1D input entities to fit the object
edges of the same type. It is important to identify the 1D entities types before
snapping to reduce the search space. In order to snap the 1D entities correctly
to the closet edges on the object surfaces, we first identify the 1D entities as
different types: lines, circles and splines, then the system can search on the
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object surfaces for candidate edges which have the same type. Next the system
compares the average distances between different candidate edges and the 1D
entity. If the average is within the tolerance TL, the edge will be selected as a
candidate. The algorithm for identification is shown in Fig. 10.

Fig. 10: The algorithm to identify candidate edges.

To snap a 1D entities to edges on object surfaces, we apply the method
proposed by Song and Shimada [18] as shown in Fig. 11. After the system
identify the candidate edges of the same type as the 1D entity, it calculates
the average distance davg shown in Fig. 12(a), between the 1D entities and
those edges. The davg is then compared with the overlapping tolerance To and
parallel tolerance Tp. When davg is less than the overlap tolerance To, the 1D
entity will be trimmed to its closest edge length. When davg is within To and
Tp, the 1D entity will be offset davg from the edge displayed in Fig. 12(b) as
the result shown in Fig. 12(c). The offsetting result to the circle edge is shown
in Fig. 13. If davg is greater than Tp, the 1D entities will not be offset to the
edge.

4 Creating Cutting Surfaces and Decomposition

The user can sweep a beautified and snapped 1D entity to create a cutting
surface. The system first picks a surface of the given model by the midpoint
of the entity then projects the stroke on the surface. The entity will be swept
to create a cutting surface in one of the following directions: 1) the object’s
surface normal direction; or 2) the current viewing direction. More sweeping
directions will be implemented in the future.
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Fig. 11: The snapping algorithm if candidate edges exist.

Next, the system determines the target volume with the midpoint of the
stroke. Then the stroke is swept along the sweeping direction until it reaches
the bounding box size of the target volume. Fig. 14(a) and (b) show the
cutting surface and the decomposition along the surface normal direction and
the viewing direction, respectively.

(a) Sweeping along nor-
mal direction

(b) Sweeping along cur-
rent viewing direction

Fig. 14: Creating cutting surfaces for webcutting.
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(a) The original input stroke (b) The snapped stroke

(c) The distances from strokes (1) and (2) to the upper edge are smaller than TP so they
are offset to the upper edge. Stroke (3) is not offset to any edges. The distance between
(4) and the lower edge is greater than TP thus (5) is not offsett to the lower edge. (6) is
offsett to the lower edge.

Fig. 12: Offset snapping illustration.

Fig. 13: Concentric circle snapping.

5 Results and Discussions

The first example demonstrates the geometry decomposition using freeform
strokes to obtain better mesh quality. The second example demonstrates the
use of the proposed UI on defeaturing to obtain a meshable model. In the last
example we show the potential of using the proposed interface to control the
orientation and the size of the mesh.



12 Jean HC. Lu et. al.

5.1 Decomposition with pen-based interface for hexahedral
meshing

The hexahedral mesh generation is a hard problem even for simpler geometries
and generally requires geometry decomposition as a pre-process. For example,
hex meshing algorithms such as sweeping and mapping fail to mesh the model
shown in Fig. 16(a) since the model contains two holes in orthogonal direction.
The model can be meshed via a sweeping algorithm if it can be decomposed
so that the two holes are in two different sub-domains. As shown in Fig. 15,
the ITEM does not provide any cutting surfaces in ideal region between the
two holes as there are no geometric features in this ideal region. Using the
CLI user will be able to webcut the volume using a planar surface; however,
the mesh quality will not be good because of the bad angles. The cutting
surface in the ideal region should be orthogonal to the sweeping source and
target surfaces (see Fig. 16(b)). Using the pen-based interface the user can
draw a stroke in the desired direction orthogonal to the source and the target
surface in the ideal region as shown in Fig. 16(b). Fig. 16(c) shows the meshed
model and the mesh quality is shown in Fig. 16(d). The decomposition via the
proposed interface has given a min Scaled Jacobian of 0.7255. While cutting
with a planer surface using the command line the min scaled Jacobian was
0.6513.

Fig. 15: None of the suggested cutting surfaces by ITEM locate in the ideal
region.

5.2 Defeaturing via Pen-Based Interface

In the last couple of decades the CAD technology has evolved significantly
and has enabled the users in creating detailed CAD models; however, this has
brought new challenges to the mesh generation phase. In order to obtain a
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(a) The original model (b) Create the desired cutting surface with a
freeform stroke in the ideal region

(c) The decomposition result via pro-
posed pen-based interface

(d) The hex mesh quality result uses the Scaled
Jacobian matrix

Fig. 16: Decomposition with freefrom stroke via pen-based interface.

conformal high-quality hex mesh with a small number of mesh element, irrel-
evant detailed features should be removed. Though much focus on automatic
defeaturing has been given [19], user interactions are still required in many
cases, especially during hexahedral mesh generation.

In this example, we demonstrate an application of the proposed pen-based
UI in the area of defeaturing. Fig. 17(a) shows a typical industrial model
containing two small features: threads and slots. Fig. 17(a) also shows the
two input strokes marked on the model surface to indicate the regions that
need to be defeatured. Fig. 17(b) shows that the small threads and slots are
decomposed from the main solid and in Fig. 17(c) those features are removed.
Fig. 17(c) and Fig. 17(d) show the meshable sub-domains and the final mesh
obtained by combining the proposed UI with other existing tools in CUBIT.

5.3 Controlling mesh orientation and size via freeform stroke

In this example, we show the potential of our pen-based interface in con-
trolling mesh orientation and size. Currently, there are no general automatic
hex meshing algorithms that can utilize tensor fields [20] based on physical
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(a) The original model: unmeshable due to small features, the
slot and threads

(b) The defeatured model

(c) The decomposed and defeatured model

(d) All hex mesh output

Fig. 17: Defeaturing to achieve a meshable model.
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parameters such as temperature distribution, stress contours, or streamlines
in flow problems. With the proposed UI, the user can draw freeform strokes
along the contours based on domain knowledge. Fig. 18(a) shows a typical
streamline pattern in the flow around an airfoil. To generate a hex mesh that
aligns with the flow pattern, the user can draw strokes along typical stream-
lines. The model is then decomposed along the strokes as shown in Fig. 18(b).
Fig. 18(c) shows that mesh is oriented along the streamlines and the mesh
size at the boundary layer at the bottom of the airfoil can be controlled by
maintaining a required spacing between the freeform strokes. A smaller spac-
ing produces finer elements at boundary layers and a larger spacing produces
coarser elements.

(a) A flow pattern around an airfoil
[21]

(b) Drawing strokes along the stream-
lines to decompose the model. The
strokes are marked as orange

(c) The oriented mesh along the
streamlines

(d) The oriented hex mesh along the
streamlines

Fig. 18: Controlling mesh orientation.
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6 Conclusions

This paper proposes a new application of pen-based UI in the area of geometric
processing for mesh generation. The proposed UI makes the manual geometry
decomposition for hexahedral meshing very intuitive, easier, and faster. The
proposed approach beautifies and snaps the freehand input strokes (drawn
directly on the CAD model) and uses gestures to create cutting surfaces to
decompose the CAD model into meshable sub-domains. The pen-based UI
can also be used in controlling the size and orientation of the hex mesh and in
defeaturing irrelevant small features. Work is underway to add more features
to the UI and to apply it to related areas in pre-processing stage.
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