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SUMMARY

The remap phase in arbitrary Lagrangian–Eulerian (ALE) hydrodynamics involves the transfer of field
quantities defined on a post-Lagrangian mesh to some new mesh, usually generated by a mesh optimization
algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the
old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be mono-
tonic, that is, not generate any new extrema in the field variables. It is well known that the only linear
methods that are guaranteed to be monotonic for such problems are first-order accurate; however, much
work has been performed in developing non-linear methods, which blend both high and low (first) order
solutions to achieve monotonicity and preserve high-order accuracy when the field is sufficiently smooth.
In this paper, we present a set of methods for enforcing monotonicity targeting high-order discontinuous
Galerkin methods for advection equations in the context of high-order curvilinear ALE hydrodynamics.
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1. INTRODUCTION AND MOTIVATION

We are interested in arbitrary Lagrangian–Eulerian (ALE) numerical methods for solving the Euler
equations of compressible hydrodynamics for modeling complex, multi-material, high speed flow
and shock wave propagation over general 2D and 3D computational domains. The remap phase
in ALE methods involves the transfer of state variables defined on a post-Lagrangian mesh to some
new mesh, usually generated by a mesh optimization algorithm. This problem can be formulated in
terms of transporting (or advecting) the state variables from the old mesh to the new mesh over a
fictitious (or pseudo) time interval determined by the motion of the mesh from its original post-
Lagrangian position to some new position. It is imperative that this remap process be monotonic,
that is, not generate any new extrema in the state variables. In the context of multi-material hydro-
dynamics, this is most important at contact discontinuities (material interfaces). It is well known
that the only linear methods that are guaranteed to be monotonic for such advection problems are
first-order accurate [1]; however, much work has been performed in developing non-linear methods,
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which blend both high and low (first) order solutions to achieve monotonicity and preserve high-
order accuracy when the field is sufficiently smooth [2, 3]. Here, we propose a set of non-linear
methods for enforcing monotonicity, which target high-order discontinuous Galerkin (DG) methods
for advection equations in the context of high-order curvilinear ALE hydrodynamics. In this paper,
we only consider the case of single material flow, but the approaches we describe here can also be
applied to multi-material flow, as we discuss in Section 5.
Using the general high-order finite element approach described in [4], we consider an ALE

formulation based on three phases:

• Lagrangian phase, solving the Euler equations on a moving curvilinear mesh;
• Mesh optimization phase, using, for example, harmonic or inverse-harmonic smoothing;
• Remap phase, based on conservative and monotonic DG advection remap.

Semi-discrete DG methods for advection equations can be formulated in terms of high-order
finite element ‘mass’ and ‘advection’ matrices. These formulations result in high-order accuracy
for sufficiently smooth fields but produce non-monotonic results (spurious oscillations) for discon-
tinuous fields. In this paper, we present three non-linear approaches for modifying either the mass
and advection matrices or the solution itself to enforce monotonicity:

• Locally scaled diffusion (LSD): In this approach, we locally lump the mass matrices and
upwind the advection matrices using an iterative process and a local ‘monotonicity measure’.

• Generalized high-order flux-corrected transport (FCT): This is a high-order generalization of
the FCT methods in [3], which is modified to account for non-lumped mass matrices.

• Optimization-based remap (OBR): In this approach, we apply an optimization procedure to
enforce monotonicity in the remapped fields, based on the work of Bochev et al. [5].

The paper is organized as follows. In Section 2, we define a set of high-order semi-discrete DG
methods for remapping the state variables of ALE hydrodynamics (density, internal energy and velocity).
In Section 3, we define monotonicity in the context of these semi-discrete equations and develop a lin-
ear, first-order variation of the general equations using mass lumping and discrete ‘upwinding’ that is
guaranteed to be monotonic. We then describe three non-linear approaches for generating monotone
solutions, which are designed to achieve high-order accuracy whenever the solution is sufficiently
smooth and automatically transition to first-order monotonic methods in regions where the solution
is not sufficiently smooth. In Section 4, we present a sequence of numerical results comparing each
of the methods to verify and quantify their performance on a series of benchmark test problems.
Finally, in Section 5, we summarize our results and draw some conclusions.

2. ADVECTION-BASED REMAP USING A SEMI-DISCRETE DG FORMULATION

This section provides a very brief overview of the high-order DG advection-based ALE remap
scheme to which we apply the monotonicity algorithms that are of central interest to the current
paper. A more detailed description of the derivation and the properties of our DG advection
approach will be presented in a future publication.
The goal of ALE remap is to transfer a field, for example, the mass density ρ, defined on an initial

spatial domain, eΩ⊂ℝd, to a new domain, Ω⊂ℝd, where d denotes the spatial dimension. We assume
that every point (particle)ex 2 eΩ is associated with a unique point (particle) x2Ω, and we are given a
continuous transition function F ex; τð Þ : eΩ� 0; 1½ �7!ℝd, such that

F ex; 0ð Þ ¼ ex and F ex; 1ð Þ ¼ x; 8ex 2 eΩ :

We refer to the parameter τ 2 [0, 1] as ‘pseudo-time’.

We think of Ω τð Þ ¼ F ex; τð Þ : ex 2 eΩn o
as an intermediate domain in pseudo-time, which ‘inter-

polates’ between the initial and new configurations, because Ω 0ð Þ ¼ eΩ and Ω(1) =Ω. One simple
way to define these intermediate domains is to use linear interpolation in pseudo-time

F ex; τð Þ ¼ exþ τ x� exð Þ: (1)
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In typical ALE hydrodynamics calculations, we are only given an initial and final mesh to con-
sider, and so linear interpolation is the best we can do. For small displacements, this choice is a
good option; however, for large displacements (specifically, large rotations), it is possible to obtain
inverted elements for τ2 (0, 1) even when both the initial and final elements are valid. One possible
solution for that case could be to use a mapping F that is a higher-order polynomial in pseudo-time,
for example, constructed by interpolating in pseudo-time a sequence of valid meshes obtained
during the mesh relaxation process.
Based on the transition function F, we define the mesh pseudo-velocity

u � ∂F
∂τ

: (2)

In the simple linear transition case (1), this formula reduces to

u exð Þ ¼ x� ex;
which is simply the mesh displacement field commonly used in advection-based remap methods (e.g., [6]).

Similar to the case of Lagrangian flow [4], we can track a ‘particle’ex 2 eΩ in pseudo-time through
x τð Þ ¼ F ex; τð Þ and introduce the concept of a ‘pseudo-material’ derivative along these
particle trajectories

dρ
dτ

x τð Þ; τð Þ ¼ d
dτ

ρ F ex; τð Þ; τð Þ½ � ¼ ∂ρ
∂τ

þ u � ∇ρ:

Because the goal of ALE remap is to extend ρ(�, 0) to ρ(�, 1) without changing it with respect to an
Eulerian frame, that is, such that ∂ρ∂τ ¼ 0,1 one commonly used approach for remap is to define ρ by
solving the pseudo-time advection equation

dρ
dτ

¼ u � ∇ρ: (3)

2.1. A semi-discrete DG formulation of the advection equation

Motivated by conservation of mass (the integral of ρ), we derive a weak formulation of the
advection (3) by evaluating the change of the integral of ρ multiplied with a function ψ, which
follows the pseudo-time deformation (i.e., its ‘pseudo-material’ derivative is zero) over an arbitrary
subregion U(τ)⊂Ω(τ). Using the Reynolds transport theorem (see, e.g., (2.4) in [4]), the fact that
dψ
dτ =0, applying (3), and integrating by parts, we obtain

d

dτ

Z
U τð Þ

ρψ ¼
Z
U τð Þ

d
dτ

ψ þ ρ
dψ
dτ

þ ρψ∇ � u ¼
Z
U τð Þ

u � ∇ρð Þψ þ ρψ∇ � u

¼
Z
U τð Þ

∇ � ρuð Þψ ¼ �
Z
U τð Þ

ρu � ∇ψ þ
Z
∂U τð Þ

ρu � nψ:
(4)

A semi-discrete discretization of (4) is based on a computational mesh on each deformed
domain Ω(τ), and a finite element space for ρ and ψ defined on that mesh. In this paper, our main
focus is on the case of discontinuous ρ, which is the natural choice for thermodynamic quantities in
many ALE codes. Specifically, we approximate the density function using the expansion

ρ x; τð Þ ¼
X
i

ρi τð Þψi x; τð Þ ¼ ρ τð ÞTψ x; τð Þ; (5)

where ψif gNv
i¼1 is a (moving) basis of a finite element space V(τ)⊂L2(Ω) defined on , ρ(τ) is an

unknown pseudo-time-dependent vector of size NV =dimV(τ) and ψ is a column vector of all the basis

1

2

1[Correction added on 27 November 2014, after first online publication: dρ/dτ was changed to ∂ρ/∂τ]
2[Correction added on 27 November 2014, after first online publication: ρ and ψ were changed to bold in equation (5)]
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functions.3 The finite element functions in V(τ) are discontinuous across the interior faces f 2ℱi(τ) of
the mesh,3 and therefore, to fix notation, we introduce the jump 〚�〛 and average {�} operators:

〚ϕ〛 ¼ ϕ� � ϕþ; ϕf g ¼ 1
2
ϕ� þ ϕþð Þ; where ϕ� xð Þ ¼ lim

s!0þ
ϕ x� snf xð Þ� �

; x 2 f ;

and nf is a normal vector field on each interior face f of the mesh, which varies continuously on f. While
the expansion (5) and the scheme we develop later in the text are valid for all choices of and V(τ),3
our interest is in the case of high-order finite elements on high-order (curvilinear) meshes, which arise in
the high-order treatment of the Lagrangian phase of ALE [4].
Applying (4) on each element T of the mesh , summing up the results and modifying the

flux in the integrals associated with internal faces, we obtain

The numerical flux {ρu �nf}* accounts for the fact that ρ is discontinuous on the internal mesh faces
and its particular definition may affect the quality of the scheme substantially. In our computations,
we use the Godunov (upwind) flux

ρu � nf
� �

� ¼ ρu u � nf
� � ¼ u � nf

� �
ρf g � 1

2
u � nf
�� ��〚ρ〛; (7)

which simply defines ρu as one of the traces of ρ at each point x 2 f, based on the sign of (u � nf )(x).
Note that the right-hand side of (6) vanishes for ψ�1, which implies mass conservation.
The scheme (6) can be recast in the matrix–vector form

d

dτ
Mρð Þ ¼ Aρ; (8)

where M and A are the mass and ‘advection’ matrices

In these settings, mass conservation follows from the fact that A has zero column sums.
We can equivalently rewrite (8) as a system of ordinary differential equations for the vector of

finite element degrees of freedom (DOF),

M
dρ
dτ

¼ Kρ; (10)

by settingK ¼ A� dM
dτ . Using arguments similar to (4), one can derive a formula for the pseudo-time de-

rivative of the mass matrix, from which we obtain the following expression for the advection matrix K:

where (u �nf)ψd denotes the downwind flux:

u � nf
� �

ψd ¼ u � nf
� �

ψf g þ 1
2

u � nf
� ��� ��〚ψ〛

Note that K has zero row sums, which implies that (10) will preserve constant functions.
More generally, one can show that our scheme will preserve any initial ρ that is representable

3[Correction added on 27 November 2014, after first online publication: V was changed to V]
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in all intermediate finite element spaces V(τ).4 For example, a linear field in physical coordi-
nates belongs to the Q2 space on any Q2 quadrilateral mesh and therefore will be preserved.
In this paper, we will study the convergence properties of the method described here only empir-

ically (in Section 4) and in the context of the monotonicity schemes introduced later, which are the
focus of this article. As a general remark, we observe a convergence rate of O(hk + 1) for the method
using k-th order DG spaces Pk/Qk. Naturally, this rate is observed only for ‘smooth’ problems where
not only the quantity being remapped is ‘smooth’ but also the transition map F (and, therefore, the
velocity u) as well.
As mentioned earlier, (8) and (10) are equivalent; however, this is no longer true after

discretization in pseudo-time. It is straightforward to verify that applying a Runge–Kutta
(RK) method to (8) leads to a conservative scheme (because AT1= 0), which, in general, does
not preserve constant fields (i.e., oscillations are introduced); on the other hand, discretizing
(10) leads to a constant preserving scheme (because K1= 0), which is not conservative.
Therefore, special time discretization schemes need to be applied in order to ensure that both
properties are valid on fully discrete level; for example, in [7], the authors consider the case of
continuous piecewise linear finite elements. In this article, we will focus on discretizations of
(10), which are only conservative up to the pseudo-time discretization error. Ultimately, the
monotonicity approaches presented here should be applicable to a more general class of
time-integration schemes, including fully conservative ones.

2.2. Example: Bernstein basis and DG advection scheme in one dimension

The discretization method described in the previous section is independent of the choice of basis
for the discrete spaces V(τ).4 However, in the following sections, this choice becomes important
because of the algebraic nature of our approach: working with the discrete vectors and matrices
directly. Our choice is to use the Bernstein basis, which in one spatial dimension for degree p
is defined as

ψk xð Þ ¼
p

k

 !
xk 1� xð Þp�k; k ¼ 0;…; p; x 2 0; 1½ �:

This definition is readily extendable to multiple dimensions in the case of quadrilaterals and
hexahedra via tensor products, and it can also be extended to other types of elements. Two simple
but important properties of this basis are that it is non-negative, ψk(x)⩾0, and a partition of unity,P

kψk(x)�1. As an example in 1D, consider an element of size h and discrete space of degree p=2:
the mass matrix Mi and the advection matrix Ki (assuming constant mesh velocity u>0) for
element i are given by

Mi ¼ h

30

6 3 1

3 4 3

1 3 6

0BB@
1CCA Ki ¼ u

6

�3 2 1 0

�2 0 2 0

�1 �2 �3 6

0BB@
1CCA:

The last column in Ki corresponds to the first degree of freedom in the next element to the right.
The evolution (10) for element i then becomes

d

dτ

ρ 0ð Þ
i

ρ 1ð Þ
i

ρ 2ð Þ
i

0BB@
1CCA ¼ u

h

�2 2 �3 3

�1 0 10 �9

0 �2 �7 9

0B@
1CA

ρ 0ð Þ
i

ρ 1ð Þ
i

ρ 2ð Þ
i

ρ 0ð Þ
iþ1

0BBBBBB@

1CCCCCCA:

4[Correction added on 27 November 2014, after first online publication: V was changed to V]
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2.3. Extension to multi-field remap for ALE hydrodynamics

In many applications, we need to simultaneously remap more than one physical field. For example,
in ALE hydrodynamics, we need to remap the material density ρ, the velocity v and the internal
energy e. The semi-discrete DG advection approach from the previous section naturally extends
to these settings: we introduce the scalar finite element spaces Vρ τð Þ, Vv τð Þ and Ve τð Þ with moving
bases {ψi}, {wj} and {ϕk}, respectively, and discretize

ρ x; τð Þ ¼
X
i

ρi τð Þψi xð Þ; vx;y;z x; τð Þ ¼
X
j

vx;y;zj τð Þwj xð Þ; e x; τð Þ ¼
X
k

ek τð Þϕk xð Þ:

As before, the spaces Vρ(τ) and Ve(τ) are typically discontinuous (although our framework can
also handle the continuous case),3 but we assume that V v(τ) is continuous,5 so each component
of the velocity vx, vy and vz will be remapped independently as a continuous field. For simplicity,
we will skip the subscript and focus on the remap of one velocity component denoted with v. We
also only consider single material flow, because the handling of mixed material zones during remap
will be addressed in a future publication.
Without going into details, starting from the advection equations for the density, momentum and

internal energy

dρ
dτ

¼ u � ∇ρ; d ρvð Þ
dτ

¼ u � ∇ ρvð Þ; d ρeð Þ
dτ

¼ u � ∇ ρeð Þ;

we apply the previously described DG weak formulation approach with trial and test functions in
Vρ τð Þ, Vv τð Þ and Ve τð Þ to derive the semi-discrete advection equations

Mρ
dρ
dτ

¼ Kρρ; (12)

Mv
dv

dτ
¼ Kvv; (13)

Me
de

dτ
¼ Kee: (14)

where Mρ and Kρ are defined by (9) and (11), while the velocity and energy mass and advection
matrices are given by

Note that the previous matrices are weighted with the density and that Kv and Ke have zero row
sums, so constant velocities and energies will be preserved by (13) and (14)
In the following section, we will discuss methods for ensuring monotonicity applicable to any of

the equations (12)–(14). Applying these methods individually to the equations, however, will
generally lead to loss of conservation in the velocity (13) and energy (14) schemes because of their
dependence on the density remap (12). To address this issue, special ‘synchronized’ versions of the
monotonicity schemes have to be developed, which are outside the scope of this article; see, for
example, [8].

5[Correction added on 27 November 2014, after first online publication: V was changed to V]
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3. NON-LINEAR APPROACHES FOR HIGH-ORDER MONOTONICITY

Besides conservation and accuracy (e.g., preservation of constants), another critical requirement on
the remap process is that it does not create artificial oscillations or lead to unphysical undershoots or
overshoots. This requirement is formalized by different concepts of ‘monotonicity’, and in this pa-
per, we follow the work of Kuzmin and Turek [9] and Kuzmin et al. [3] to extend these concepts to
our high-order DG advection algorithm.
Consider the semi-discrete advection (10) for the density

dρ
dτ

¼ M�1Kρ:

Because K has zero row sums, we can write the individual entries in the following flux form:

dρi
dτ

¼
X
j6¼i

M�1K
� �

ij ρj � ρi
� �

: (15)

Let us consider the following assumption for the off-diagonal entries of M�1K:

M�1K
� �

ij
⩾ 0; i 6¼ j; (16)

which holds in the piecewise-constant (Q0) case. For higher-order spaces, this property can be ensured
only after suitable modifications to M and K, for example, using mass lumping and ‘discrete
upwinding’, as discussed in the subsections later. Assuming that (16) holds, we can conclude that

“maxima do not increase” : ρi ¼ max
j

ρj ⇒ ρj � ρi ⩽ 0 ⇒
dρi
dτ

⩽ 0;

and

“minima do not decrease” : ρi ¼ min
j

ρj ⇒ ρj � ρi ⩾ 0 ⇒
dρi
dτ

⩾ 0:

Because the discrete advection operator M�1K is sparse, the fact that local maxima/minima
cannot increase/decrease implies that ρ will stay between given initial bounds (e.g., ρ will remain
positive). This is a form of monotonicity known as the local extremum diminishing (LED) property.
The work of Kuzmin and Turek [9] and Kuzmin et al. [3] show that LED is the multi-dimensional,
unstructured generalization of the total variation diminishing property [10].
Much of the work in developing monotone/LED advection methods has focused on low-order

finite elements, although there are some exceptions [11]. The extension of the notion of monotonic-
ity to high-order finite element functions poses a number of challenges. First, the mass matrix can-
not be lumped without damaging the high-order approximation, and its inverse in general contains
positive and negative entries. This means that considering the signs of the entries ofK is not enough
in the high-order case. Second, high-order functions easily oscillate by nature, so suppressing the
creation of local extrema is even more challenging. Finally, the high-order polynomial basis can
be critical, because having a positive vector of DOF ρ does not necessarily translate to having a pos-
itive function ρ. In our experiments in Section 4, we use the Bernstein polynomial basis, which has
positive basis functions, guaranteeing that ρ will be positive if ρ is.
For discretization in pseudo-time of the semi-discrete equations (15), we will consider explicit

multistage RK methods, among which the class of strong stability preserving (SSP) methods [12]
is of particular interest because they define high-order monotone schemes by combining multiple
monotone forward Euler steps. Generally, we will focus on a single time step evolving ρ= ρ(τ) to
ρnew≈ ρ(τ +Δτ). Let us consider the forward Euler method:

ρnewi ¼ ρi þ Δτ
X
j 6¼ i

M�1K
� �

ij ρj � ρi
� �

:
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This example highlights another motivation for the requirement that the off-diagonal entries in
M�1K are non-negative: with this assumption, we can guarantee that there is a small enough time
step in forward Euler, such that the every entry of ρnew is a convex combination of the neighbor
entries from the old vector ρ.
To formulate the LED property on a fully discrete level, we first introduce a local neighborhood Ni

for each degree of freedom i. Given Ni, we impose the following monotonicity requirement at each i:

ρmini ⩽ ρnewi ⩽ ρmaxi ; where ρmini ¼ min
j 2 Ni

ρj and ρmaxi ¼ max
j 2 Ni

ρj: (17)

Our default option is to define Ni based on the sparsity pattern of the i-th row of K, motivated by
the sum in (15) for a diagonalM. Because of the face integrals in our DG scheme, this means that Ni

consists of all DOF in elements that share a face with the element containing i. More restrictive
choices, which, for example, select only upwind neighbors, are also possible.
In the remainder of this section, we present three algebraic approaches that take the original high-

order DG solution and modify it, in order to ensure monotonicity. By using the Godunov theorem,
the modification cannot lead to a linear scheme and maintain high-order approximation at the same
time. Thus, all of the approaches use the high-order solution in different, non-linear, ways.

3.1. LSD

Our goal is to modify the high-order linear scheme (10) in order to remove oscillatory behavior
while preserving the high-order in smooth regions. We utilize the following two-step approach:
(i) we modify (10) to obtain a low-order monotone linear scheme; (ii) we define a blending
algorithm that combines the high-order scheme with the low-order monotone scheme. The blending
process will depend on the input data favoring the monotone scheme where oscillations arise and
the high-order scheme in smooth regions.
One way to derive a monotone scheme from (10) is to apply ‘discrete upwinding’ to the matrix K

and lump the mass matrix M (see, e.g., [9]):

M� dρ
dτ

¼ K�ρ: (18)

The diagonal lumped mass matrix M* and ‘discretely upwinded’ advection matrix K* can be
written as

M� ¼ Mþ L; K� ¼ Kþ D; (19)

where the matrices L and D are algebraically constructed symmetric matrices with off-diagonal entries

Lij ¼ �Mij; Dij ¼ max 0;�Kij;�Kji

� �
; (20)

and diagonal entries, which zero out the row sums

Lii ¼ �
X
j 6¼ i

Lij; Dii ¼ �
X
j 6¼ i

Dij: (21)

The matrices L and�D are algebraic diffusion matrices in that they have properties typical for
discretizations of the diffusion operator, (�Δ): they are symmetric and sparse and have non-
positive off-diagonal entries and zero row sums. The use of the positive Bernstein basis is essential
here because it guarantees that Lij=�Mij⩽0. The function of the matrix D is to render K* LED by
eliminating non-positive off-diagonal entries of the advection matrix K in a conservative manner.
Indeed, mass conservation for (18) follows from the identities LT1=DT1=0, which combined with
dM
dτ ¼ A� K, and AT1=0 imply

d

dτ
1TMρ
� � ¼ 1T

dM
dτ

ρþ 1TM� dρ
dτ

¼ 1T A� Kð Þρþ 1TK�ρ ¼ 0:
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It is interesting to note that, because of the upwinding (7) of the face fluxes, the off-diagonal
(element-wise) blocks in K have non-negative entries in the Bernstein basis. As a consequence,
in this case, the discrete upwinding of K is always local to each element.
Let us consider the 1D example from Section 2.2. We point out that if we apply discrete

upwinding directly to M�1K, the result will have dependencies that are not consistent with the
upwind direction which, in this example, means that there will be positive entries below the
diagonal. On the other hand, using mass lumping of M and discrete upwinding of K leads to
the low-order scheme

d

dτ

ρ 0ð Þ
i

ρ 1ð Þ
i

ρ 2ð Þ
i

0BB@
1CCA ¼ u

h

�3 2 1 0

0 �2 2 0

0 0 �3 3

0B@
1CA

ρ 0ð Þ
i

ρ 1ð Þ
i

ρ 2ð Þ
i

ρ 0ð Þ
iþ1

0BBBBB@

1CCCCCA (22)

where only upwind dependencies are present — the matrix is upper triangular.
While this form of simple upwinding is an effective way to ensure monotonicity, it is far too

diffusive (first-order accurate at best; see Figure 1) to be useful in practice. Instead, we propose
here a simple algorithm that localizes the upwinding process only to the regions where the
LED property is violated.
First, we need a good ‘monotonicity measure’ to inform our choice as to where to apply the

discrete upwinding. This measure, associated with the DOF and denoted as μ(ρ), is such that
μi(ρ) 2 [0, 1] should vanish (μ=0) where the monotonicity bounds (17) are not violated, and
only be active (μ=1) where (17) does not hold. A straightforward way to define μ(ρ) is to
perform a high-order, linear advection step based on (10), and then based on the high-order
solution ρ, compute

μi ρð Þ ¼
β ρi � ρmax

i

� �
; if ρi > ρmax

i

β ρmin
i � ρi

� �
; if ρi > ρmin

i

0 otherwise:

8><>: (23)

The function β : R+! [0, 1] can be defined in many ways;6 the simplest case is to return the value
one for any argument. One can also use smoothly varying functions of the argument designed to
transition between the ‘off’ state (μ=0), for small violations of monotonicity, and the ‘on’ state
(μ=1), for larger violations.

6[Correction added on 27 November 2014, after first online publication: 7 was remove after R+]

Figure 1. Convergence rates of low-order DG remap schemes in 1D: comparison of the Q0 method and the
low-order Q2 method (22); both methods use the same initial Q0 projection.
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Given the ‘monotonicity measure’ μ, we define local lumping and upwinding matrices Lμ and
Dμ, which are symmetric and have zero row sums and off-diagonal entries

Lμ
� �

ij
¼ �max μi;μj

n o
Mij; Dμ

� �
ij
¼ max μi;μj

n o
max 0;�Kij;�Kji

� �
; i 6¼ j:

Note that if μi=1, the off-diagonal entries in the i-th row of (M+Lμ)
� 1(K+Dμ) are non-

negative, so the LED property holds there. In other words, if μ has marked the DOF where LED
is violated, the previous local modification will fix them to be monotonic.
This motivates the following iterative process, which we refer to as LSD:

0. Input: ρ≈ ρ(τ); output: ρnew≈ ρ(τ +Δτ).
1. Compute the monotonicity bounds ρmin and ρmax from (17).
2. Set μ=0.
3. Compute ρnew from ρ while applying partial upwinding K(τ)!K(τ) +Dμ(τ) and lumping

M(τ)!M(τ) +Lμ(τ) at every stage of the time-stepping algorithm.
4. Compute monotonicity error: μe=μe(ρnew) where μe is defined by (23) using β(t) = t.
5. Check for convergence: if μek k1 < ϵ, then exit the LSD iteration.
6. Compute the new monotonicity measure: μnew=μ(ρnew).
7. Set μi ¼ max μi;μ

new
i

� �
, and go to step 3.

Clearly, the previous algorithm will do nothing if the high-order solution is already monotonic,
that is, μ( ρnew) = 0, so in particular, it will preserve linear fields.
In general, there is no theoretical guarantee that the LSD algorithm will converge, and in some

very rare cases, we have, in fact, observed stagnation. This condition is easy to detect: if the entries
of μ remain unchanged during the update in step 7, that is, if μinew⩽μi, 8i. In practice, we also limit
the number of LSD iteration to 20; however, in our experience, the algorithm generally converges
much faster, in three to four iterations. The numerical tests presented in Section 4 use the sharp cut-
off function β(t) =min{1, 1012t} in (23) for step 6, and the stopping tolerance ϵ=10� 10.

3.2. Generalized high-order FCT

Amethod that guarantees monotonicity without an outer iteration can be constructed using the ideas of
FCT. The basic philosophy of an FCT approach is to begin with amethod that is guaranteed to bemono-
tonic (by compromising accuracy) and then seek local non-linear corrections to the flux, which improve
accuracy while maintaining monotonicity (in contrast to LSD, which starts from the high-order solution
and makes non-linear corrections to render it monotonic). This is accomplished by adding back in the
difference between the diffusive approximation and the high-order approximation (known in FCT
literature as ‘anti-diffusion’) in a controlled manner. The key to maintaining conservation will be adding
the anti-diffusion in an anti-symmetric flux form. To guarantee monotonicity, we examine the conse-
quences of anti-diffusive flux contributions and explicitly scale back or set to zero those terms, which
could generate bounds violations in the worst case of all positive or all negative fluxes acting in concert
with no canceling by fluxes of the opposite sign. According to (19), the equation

M� dρ
dτ

¼ K�ρþ M� �Mð Þ dρ
dτ

� Dρ (24)

can be seen to be equivalent to the original high-order equation (10). It can also be interpreted as the low-
order equation plus two correction terms. The correction terms account for the discrepancy between the
low-order and high-order equations in the lumped mass matrix and in the addition of explicit diffusion.
Following Kuzmin and Turek [13], we now show that both of these terms can be put into an anti-

symmetric flux form. By doing so, we afford the ability to modify the fluxes (as long as themodifications
are symmetric) while retaining conservation. Because D has zero row sums, we can write

Dρð Þi ¼
X
i 6¼ i

Dij ρj � ρi
� �

: (25)
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Because L=M*�M has zero row sums (see (20) and (21)), we can also write (26)

M� dρ
dτ

�M
dρ
dτ

	 

i

¼
X
j 6¼i

Lij
dρj
dτ

� dρi
dτ

	 

¼
X
j6¼i

Mij
dρj
dτ

� dρi
dτ

	 

(26)

We now have the semi-discrete flux form required for the anti-diffusion:

f ij ¼ Mij
d

dτ
þ Dij

	 

ρi � ρj
� �

: (27)

Because it is the anti-symmetry fij=�fji that ensures conservation, any symmetric scaling of
the fluxes

f �ij ¼ αij f ij; where αij ¼ αji; (28)

is also conservative. Our modified equation is then

M� dρ
dτ

¼ K�ρþ f � (29)

where

f � ¼
X
j 6¼ i

αij f ij (30)

are the limited anti-diffusive corrections. When αij�1, the previous equations are just a different
form of (10), while for αij�0, they reduce to the low-order approximation (18). The fact that in-
termediate values for αij could be picked to interpolate from the latter case to the former case is
the main idea in FCT.
To formulate this on fully discrete level, we consider a forward Euler discretization for the high-

order and low-order equations:

MΔρH ¼ ΔτKρ; (31)

M�ΔρL ¼ ΔτK�ρ: (32)

Note that (31) can be expanded into a form analogous to (24):

M�ΔρH ¼ M�ΔρL þ M� �Mð ÞΔ ρH � ΔτDρ: (33)

This is precisely the high-order update, written as a low-order update plus the anti-diffusion
correction terms. Putting the anti-diffusion terms into flux form, we have

M�ΔρH
� �

i
¼ M�ΔρL
� �

i
þ
X
j6¼i

Mij Δ ρHi � Δ ρHj
� �

þ Δτ
X
j6¼i

Dij ρi � ρj
� �

(34)

or

M�Δ ρH
� �

i
¼ M�ΔρL
� �

i
þ
X
j6¼i

f ij: (35)
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If we insert the flux limiting factors αij=αji, we have an update, which is now an approximation to
the high-order update:

M�Δρð Þi ¼ M�Δ ρL
� �

i
þ
X
j6¼i

αij fij; (36)

with a way to control the contributions from the anti-diffusive fluxes.
The procedure for choosing the αij follows analogously to traditional FCT. First, we choose

allowable bounds on the solution, examine the consequences of the anti-diffusive corrections to
see if they could lead to bounds violations, and then use a simple ‘worst case’ analysis to choose
αij that guarantees monotonicity with a single step procedure.
The solution bounds are defined by the extremal values within the neighborhood Ni defined by

the non-zero entries in the advection matrix K, as discussed previously in Section 3. We can then
form the allowable changes because of anti-diffusive corrections:

ΔρAþ;max
i ¼ ρmax

i � ρLi ; ΔρA�;max
i ¼ ρLi � ρmin

i ; (37)

where ρLi is the solution updated by the low-order approximation. Finding a set of αij that prevents bounds
violations but is otherwise as close to unity as possible is a globally coupled problem. However, we can
obtain an admissible set of αij that guarantees monotonicity by assuming a ‘worst case’ situation where all
positive or negative anti-diffusive fluxes contribute together to increase or decrease a solution value, while
all fluxes of the opposite sign have been canceled. Under this scenario, we compute:

ΔρA� ¼ 1
M�

ii

X
j 6¼i

f�ij : (38)

The positive or negative fluxes associated with a solution value must be scaled back if ΔρA�

exceeds ΔρA�,max:

α�i ¼ min 1;
Δρ A�;max

Δρ A�

	 

: (39)

Each flux will then potentially have two constraints associated with it, one from each solution
value it influences. We can guarantee no violation of bounds if we choose the most restrictive
constraint for each flux:

αij ¼
min αþi ; α

�
j

� �
f ij > 0

min α�i ; α
þ
j

� �
f ij < 0:

8><>: (40)

Because fij=� fji,αij=αji.
7

Using the new monotone update Δρ in place of the low-order update ΔρL, we can now repeat the
FCT process. The new high-order anti-diffusive fluxes are given by fij← (1�αij)fij, that is, the
remainder of the fluxes that was not used as a correction to define Δρ from ΔρL. In other words,
instead of (35), the starting point now is

M�ΔρH ¼ M�Δρþ
X
j6¼i

1� αij
� �

f ij:

This process can be repeated multiple times and is sometimes referred to as iterated FCT, as
originally developed in [14].
In order to use the FCT algorithm in a high-order multistage RK method, we replace the ODE

right-hand sideM� 1Kρ=ΔρH/Δτ with the term Δρ/Δτ at every stage of the RK method. In addition,

7[Correction added on 27 November, after first online publication: i has been corrected to j in equation 40]
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at every stage, new bounds ρmin and ρmax are computed. The value of Δτ is important for the FCT
algorithm because smaller Δτ will generally produce a slope vector Δρ/Δτ that is closer to ΔρH/Δτ.
In order to ensure monotonicity with SSP methods, we use the same Δτ in the FCT algorithm as the
full RK pseudo-time step.

3.3. OBR

Our third method for ensuring monotonicity consists of two main steps: (i) given a vector ρ≈ ρ(τ),
compute a high-order approximation ρH≈ ρ(τ +Δτ) to problem (10), using, for example, an
explicit multistage RK method; (ii) define the new density vector ρnew≈ ρ(τ + Δτ) by solving an
optimization problem that ensures the following properties for ρnew: it is close to ρH, has the same
mass as ρH and satisfies the monotonicity bounds (17). Specifically, in step 2, we use the mass-
variable mass-target (MVMT) version of the OBR algorithm; see [5, 15, 16]. The MVMT-OBR
problem reads

ρnew � ρHk kℓ2 7!min; mTρnew ¼ mTρH; ρmin
i ⩽ ρnewi ⩽ ρmax

i 8i; (41)

where m=M(τ +Δτ)1 is the vector of the row sums of the mass matrix at pseudo-time τ +Δτ; ∥�∥ℓ2
denotes the Euclidean vector norm, xk k2ℓ2¼ xTx ¼Pix

2
i ; and ρ

min, ρmax are the vectors of local lower
and upper bounds in (17). This problem can be solved efficiently [16], leading to a fast one step
method that is both conservative and LED monotonic.
The OBR approach is very general and has been applied successfully in low-order remap settings

[17] and is similar in nature to the ‘repair’ approach in [18]. However, the fact that it is not based on
a semi-discrete formulation has the potential drawback that physical intuition might be difficult to
express in terms of formal constraints. For example, the solution of (41) may change ρH globally,
even though the violation of the bounds is local. This is due to the use of the ℓ2 norm to measure
the error between ρnew and ρH, and while other, more localized choices of norms are possible, for
example, ℓ1 norm, they lead to other issues such as non-uniqueness and increased difficulty in
the solution of the optimization problem.

3.4. Pseudo-time step control

The number of time steps in pseudo-time will depend on the size of the mesh displacement relative
to the size of the mesh elements. In effect, this is very similar to a CFL constraint onΔτ. In practice,
we control Δτ using the constraint

Δτ ⩽ Cmin
i

M�
ii

K�
ii

;

whereM* andK* are the fully lumped mass matrix and the fully upwinded advection matrix, respectively
(see (19)–(21)), and C⩽1 is a CFL constant. The motivation for this choice is the fact that only under this
constraint the low-order method (18) based onM* andK* will be monotone in the LED sense. Generally,
this choice is independent of the solution; however, when the matrices M and K (and, consequently,
M* andK*) depend on one of the fields being remapped, then Δτ may depend on the solution. This is
the case when remapping density and specific internal energy, where density serves as a weight inMe

and Ke, see Section 2.3.

4. NUMERICAL RESULTS

In this section, we consider a set of numerical experiments, which are designed to verify our high-
order DG advection method as well as each of the monotonicity methods presented. We consider
remap examples where the mesh motion is prescribed by some predetermined analytic motion as
well as our target application of ALE hydrodynamics, where the mesh motion is a complicated
function of the hydrodynamic motion. In each case, we discuss the differences and similarities of
each approach and highlight their unique features.
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4.1. Remap of analytic functions with prescribed mesh motion

We first compare different remapping strategies using (10) with a 2D Q2 mesh and a discontinuous
Q2 Bernstein polynomial basis on a series of test functions representing the initial field on a unit
square. The motion of the mesh is prescribed by a displacement function, which rotates the mesh
through 30° while keeping the boundary fixed. The intent is to verify and examine the behavior
of the remap algorithms in a relatively simple setting. Subsequent sections test the algorithm on
more demanding problems.
The first test function is a simple 2D linear field ρ= x+ y. We consider it a design principle that any

admissible scheme must preserve linear functions. Indeed, all of the monotone schemes (LSD, FCT
and OBR), as well as the unmodified DG scheme, exhibit this property. However, it is worth noting
that the ‘discrete upwinding’ procedure by itself does not. These results are shown in Figure 2.
The next test problem is a smooth function, ρ=1+sin (πx) sin (πy), with a maximum at the center. A

comparison of the unmodified DG scheme and the three monotone schemes is shown in Figure 3. They
are essentially indistinguishable by eye, as we might expect for a smooth test function. However, an
examination of the convergence behavior shows that the methods do not produce identical results.
The convergence of the fourmethods in the L1 and L1 norms for this test function is shown in Figure 4.
These calculations were performed using an 8×8, 16×16 and 32×32Q2 element sequence of meshes
for each method. The convergence can be seen to be greater than second order for each of the methods.
In the subsequent section, we examine the more challenging case of an extremal point translating
through the mesh, whereas in this test, it remains at a fixed location.
Next, we examine the behavior of three models of a transition between the values of 0 and 1, of

increasing sharpness. These can be thought of as simple models for a shock profile or a contact
discontinuity, which may be smeared by an artificial viscosity or by monotone projection of a
material interface not aligned with a mesh.
The smoothest version of this test is a profile ρ=π/2 + arctan(w(x�1/2)). The parameter w

controls the width of the profile and is set to w=20 for these tests. With the 20×20 element mesh
used in the previous test problems, the results are again very close for all of the schemes (Figure 5).
The convergence behavior is shown in Figure 6.

Figure 2. Results for remap of linear density field (left to right): initial mesh and density, high-order result,
fully upwinded result, locally scaled diffusion result (representative of all monotone schemes).

Figure 3. Results for remap of smooth field ρ=1+ sin(πx)sin(πy).
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A profile that is onlyC1 continuous can be formed from piecewise quadratic profiles. This profile also
has the property that it has zero initial projection error, so that any error in the solution reflects only the
remapping error. The results on an 8×8 grid, and convergence behavior are shown in Figures 7 and 8. A
coarser grid was used than in other test problems to make differences in the solution more apparent.
A test problem that exercises the monotonicity strategies is the remap of a step function, using the

same prescribed rotational motion. The results are shown in Figure 9. The unmodified DG method
exhibits undershoots and overshoots as expected, but all three of the monotone schemes preserve
the minimum and maximum values in the initial condition. While there are some qualitative
differences in the solution, none of the methods stands out as clearly superior by inspection.
The convergence behavior of the methods is shown in Figure 10. All methods have similar

Figure 4. Convergence behavior for remap strategies of smooth field ρ= 1+ sin(πx)sin(πy).

Figure 5. Results for remap of arctan field.

Figure 6. Convergence behavior of remap strategies of arctan field.
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convergence rates in L1, while the OBR method seems to have slightly larger error magnitudes at
any given resolution.

4.2. Rotation of a smooth profile

The goal of this test is to investigate and compare the performance of the three monotonicity
approaches applied to a smooth field subject to a relatively large amount of advection. Specifically,
we use the following smooth function (Figure 11) as initial data:

ρ x; yð Þ ¼ exp �r2t
x� px
rx

	 
2

þ y� py
ry

	 
2

� 1

" #28<:
9=;þ 1;8

8Correction added on 27 November 2014, after first online publication: terms x in px and rx were made subscripts
on the equation.

Figure 8. Convergence behavior of remap strategies of piecewise quadratic field.

Figure 7. Results for remap of a piecewise quadratic field.

Figure 9. Results for remap of a step function.
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where we set

px ¼ 0; py ¼ �0:5; rx ¼ 1:2; ry ¼ 0:8; and rt ¼ 1:

This specific field was chosen such that it has a (global) maximum along a curve (ellipse) and not
just a point. This feature will test and emphasize the behavior of the three methods near maximum.
We advect the field using the following procedure: on the coarse mesh (h=1/2 in the central

mesh block), we perform 180 steps consisting of

a. remapping the field from the original mesh to the mesh rotated by 2° in counterclockwise direction;
b. moving the rotated mesh back to the original location without modifying the discrete represen-

tation of the field.

With each level of (dyadic) uniform mesh refinement, we double the number of steps and halve
the angle of rotation of the mesh in step a.
The domain is the disk centered at the origin with radius r ¼ ffiffiffi

8
p

, and we use a sequence of
quadratic (Q2) meshes conforming to the curved boundary. The spatial discretization uses Q2

discontinuous finite elements. For pseudo-time integration, in this case, we use the SSP RK method
with three stages [12], in order to match the third-order spatial discretization.
In Figure 12, we present a convergence study of the original DG scheme and the three monoto-

nicity algorithms: LSD, FCT and OBR. The results show that the original DG method is close to
third-order accurate in both the L1 and L1 norms. On the other hand, all three monotone schemes
exhibit reduced convergence rates of about 2–2.5 in the L1 norm and 1.5 in the L1 norm. The

Figure 11. Initial smooth field: view from the top (left) and a 3D view (right).

Figure 10. Convergence behavior of remap strategies on step function.
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reason for this reduction, as illustrated in Figure 13, is the large error near the ellipse where the
maximum of the smooth field is located. For all three monotonicity algorithms, the error is clearly
localized around the ellipse and focuses near it under refinement. Overall, on this test, FCT
performs best of the three, followed by OBR and then LSD.
Closer inspection of the error for OBR reveals an interesting observation; see Figure 14: there is a

small shift in the error and the field itself in the region away from the maximum where the field
should stay very close to the value of 1 at all times. One possible explanation of this behavior is
the fact that OBR uses a non-local mechanism to distribute the mass that is being removed (added)
because of clipping of overshoots (undershoots).

4.3. Solid body rotation on unstructured mesh

This test problem is based on the solid body rotation benchmark as described in [2, 9] where three
shapes are projected onto a mesh as an initial condition, then subject to a 360° rotation of the mesh.
In this case, we consider an unstructured disk mesh with the so-called ‘butterfly’ topology, with the
shapes initialized at the points

r
!
1 ¼ 1:5 cos π=6ð Þ; sin π=6ð Þf g;
r
!
2 ¼ 1:5 cos 3π=2ð Þ; sin 3π=2ð Þf g;
r
!
3 ¼ 1:5 cos 5π=6ð Þ; sin 5π=6ð Þf g:

The initial conditions for the density field are defined according to the function9

ρ x; yð Þ ¼ cone x; y; r
!
1

� �þ hump x; y; r
!
2

� �þ cyl x; y; r
!
3

� �þ 1; (42)
where

cone x; y; r!ð Þ ¼
0; r x; y; r!ð Þ > 1

1� r x; y; r!ð Þ; otherwise

(

hump x; y; r!ð Þ ¼
0; r x; y; r!ð Þ > 1

1
4

1þ cos π min
�
r x; y; r

!� �
; 1

� �� �
; otherwise

8<:
cyl x; y; r!ð Þ ¼

0; r x; y; r!ð Þ > 1

0; y > 0:7 r!y
� �

& y < 1:3 r!ð Þ
1; otherwise

& x > 1:4r!x
� �

8>>><>>>:
9[Correction added on 27 November 2014, after first online publication: humpr has been corrected to hump in (equation 42)]

Figure 12. Convergence plots for the smooth field rotation test; L1 (left) and L1 (right) norms. The number
indicates the convergence rates.
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and the distance function is defined as

r x; y; r
!� �

¼ 1
0:7 r!j j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� r!x
� �2 þ y�r!yð Þ2

q

Figure 13. Plots of the error after one full 360° rotation; left to right: three levels of uniform mesh refine-
ment; top to bottom: monotonicity algorithm: none, LSD, FCT and OBR, respectively. Each plot uses the

exact range of values (symmetric around zero) spanned by the error function.
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We consider two cases for the initial density function defined via (42), each with the same total
number of DOF:

1. A fine mesh using Q2 discontinuous elements (nine DOF/element);
2. A coarse mesh using Q4 discontinuous elements (25 DOF/element).

In each case, we use the positive Bernstein polynomial basis for both the initial projection
(which ensures a monotone initial condition) and the DG remap basis. The initial conditions
for each case are shown in Figure 15. We advect the density field for a full 360° rotation
by prescribing the mesh motion to be a rotation about the origin of 1/4 degree for 1440 steps
in a manner similar to the previous test problem of Section 4.2. For each step, the semi-
discrete advection equation of (10) is solved in pseudo-time using an explicit RK2 time-
integration method with two pseudo-time steps per remap step. For the FCT method, we
use two iterations for the Q2 case and four iterations for the Q4 case.
The results for the Q2 and Q4 cases are shown in Figures 16 and 17, respectively. For each

case, the unmodified high-order results exhibit spurious oscillations (monotonicity violations)
at the boundaries of the slotted-cylinder shape (as expected) but do an excellent job of pre-
serving the cone and hump shapes. Each of the monotone methods preserves the initial bounds
of the function. The LSD method leads to more ‘peak clipping’ for the cone and hump
functions, while FCT and OBR do a better job at preserving these features, consistent with
the results of Section 4.2. For the Q4 case, LSD gives the sharpest version of the slotted
cylinder while both FCT and OBR generate some (monotone) fluctuations at the edges of
the slot. While the quality of each monotone method is similar via the plots of Figures 16
and 17, there is a distinct difference in the computational cost of each method as shown in
Table I. The LSD method is the most expensive (about three times the cost of OBR and
FCT) in terms of run time because of the requirement of multiple (iterative) solves per remap
step. The single pass nature of the OBR method makes it the best in terms of run-time
performance, although the FCT method is very competitive, with only a slightly greater in-
crease in relative run time for each case.

4.4. ALE shock triple-point problem

Finally, we explore our new methods in the context of our target application, ALE hydrodynamics,
by considering a single material version of the so-called shock triple-point benchmark (e.g., as
described in [19]). We modify the problem for the single material case by making each of the three
regions an ideal gas with the gamma-law coefficient γ=1.5.
We use Q4 continuous finite elements for the kinematic variables (position, velocity, etc.) and Q3

discontinuous finite elements for the internal energy combined with an explicit energy calculation

Figure 14. Comparison of the errors for the FCT and OBR monotonicity algorithms, cross section at
x=10�3 for mesh sizes h= 1/8 (left) and h=1/16 (right). Notice that the error for OBR is shifted away from

zero in the regions away from the maximum and minimum.
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conserving RK2 dynamic time-stepping algorithm for the Lagrangian phase of the ALE calcu-
lation. Every 20 Lagrange cycles, we apply two iterations of a curvilinear mesh relaxation
algorithm followed by a pseudo-time advection remap where we use Q4 continuous elements
for the velocity (momentum), Q4 discontinuous elements for the density and Q3 discontinuous
elements for the internal energy in solving (13), (12) and (14), respectively, in pseudo-time
using an explicit RK2 time-stepping algorithm. For both the density and internal energy
remaps, we apply our three different monotone methods (and also consider the unmodified
version of these). We do not apply any monotonicity treatment for the velocity remap under
the assumption that the field is made sufficiently smooth via artificial viscosity during the
Lagrange phase.
In Figure 18, we show the plots of the ALE mesh and density fields at the final time of

t=5.0 for the unmodified, LSD, FCT and OBR cases. We also show zoomed-in views of
the vortical flow region around the triple point. The unmodified results exhibit spurious
oscillations/ringing along the material interface, while the monotone methods do not. Each
of the monotone methods yields essentially the same shock structures, but there are noticeable
differences along the material interface. The LSD result yields the smoothest interface, while
FCT and especially OBR exhibit some fluctuations along the interface. The relative run time
and cycle counts of each result are given in Table II. Each of the monotone methods results

Figure 15. 3D view (top) and 2D view (bottom) of initial mesh and density using Q2 elements on a fine
mesh (left) and Q4 elements on a coarse mesh (right).
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Figure 17. 3D view (top) and 2D view (bottom) of results for solid body rotation test on unstructured mesh
using Q4 elements (left to right): high-order result, LSD result, FCT result and OBR result.

Table I. Relative run times of each monotone
method for the solid body rotation test problem.

Method Relative run time

Unmodified Q2 1.0
OBR Q2 1.02
FCT Q2 1.12
LSD Q2 2.95
Unmodified Q4 2.52
OBR Q4 2.59
FCT Q4 2.90
LSD Q4 8.91

Figure 16. 3D view (top) and 2D view (bottom) of results for solid body rotation test on unstructured mesh
using Q2 elements (left to right): high-order result, LSD result, FCT result and OBR result.
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in fewer overall cycles to complete the calculation, resulting in an overall speedup of the cal-
culation for FCT and OBR. The three times cost of the LSD remap is significantly amortized
via the 20 Lagrange steps per remap and the overall reduced cycle count but still results in the
largest computational cost of all the methods.

Figure 18. Results for ALE shock triple-point problem using Q4 elements (top to bottom): high-order result,
LSD result, FCT result and OBR result.
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5. CONCLUSIONS AND FUTURE WORK

We have presented three approaches for ensuring a monotone solution for advection equations using
high-order DG finite element methods. Both the LSD and generalized high-order FCT approaches con-
stitute new methods, and the application of OBR to high-order DG advection is, to our knowledge,
new. Our particular interest in this problem is for the remap phase used in the context of high-order
curvilinear ALE hydrodynamics where the goal is to transfer a given field quantity defined on a
post-Lagrangian mesh to some new mesh. Based on the results of Section 4, each of the non-linear
methods is capable of achieving some level of high-order accuracy for sufficiently smooth fields
(although in some cases, this is not as good as the unmodified DG method) while producing a
monotone solution for discontinuous initial conditions. In terms of run-time performance, the OBR
and generalized high-order FCT methods excel while the LSDmethod is substantially more expensive
because of its multi-pass nature. Based on these results, we favor the high-order FCT approach for both
its run-time performance (which is slightly worse than OBR) and its local nature. While this paper has
focused exclusively on single material ALE hydrodynamics, our ultimate interest is multi-material
flow. In future work, we intend to apply these samemonotonicity approaches to the multi-material case
by using high-order finite element-based volume fraction functions.
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