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ABSTRACT

The Data Transfer Kit (DTK) is a software library designed to provide parallel data transfer services for
arbitrary physics components based on the concept of geometric rendezvous. The rendezvous algorithm
provides a means to geometrically correlate two geometric domains that may be arbitrarily decomposed
in a parallel simulation. By repartitioning both domains such that they have the same geometric domain
on each parallel process, efficient and load balanced search operations and data transfer can be
performed at a desirable algorithmic time complexity with low communication overhead relative to
other types of mapping algorithms. With the increased development efforts in multiphysics simulation
and other multiple mesh and geometry problems, generating parallel topology maps for transferring
fields and other data between geometric domains is a common operation. The algorithms used to
generate parallel topology maps based on the concept of geometric rendezvous as implemented in DTK
are described with an example using a conjugate heat transfer calculation and thermal coupling with a
neutronics code. In addition, we provide the results of initial scaling studies performed on the Jaguar
Cray XK6 system at Oak Ridge National Laboratory for a worse-case-scenario problem in terms of
algorithmic complexity that shows good scaling on O(1× 104) cores for topology map generation and
excellent scaling on O(1× 105) cores for the data transfer operation with meshes of O(1× 109)
elements.
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1. INTRODUCTION

In many physics applications, it is often desired to transfer fields (i.e. degrees of freedom or other data)
between geometric domains that may or may not conform in physical space. In addition, for massively
parallel simulations, it is typical that geometric domains not only do not conform spatially, but also that
their parallel decompositions do not correlate and are independent of one another due to physics-based
partitioning and discretization requirements. As an example, this situation can occur in multiphysics
simulations where physics fields provide feedback between solution iterations [1] or parallel adaptive mesh
simulations where fields must be moved between meshes after refining and coarsening [2]. It is therefore
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desirable to have a set of tools to relate two geometric domains of arbitrary parallel decomposition such
that fields and other data can be transferred between them.

The Data Transfer Kit (DTK) is a software library developed as part of the Consortium for Advanced
Simulation of LWR’s (CASL) [3] designed to provide parallel services for mesh and geometry searching
and data transfer. The algorithms implemented in DTK are based on the concept of geometric rendezvous
as developed by Plimpton, Hendrickson, and Stewart [4] originally implemented as part of the SIERRA
framework [5]. Their work has been extended to move towards a component design for use with arbitrary
physics codes such that varying representations of mesh, geometry, and fields are able to access these
services [6]. In addition, the original mesh-based rendezvous algorithms have been expanded to be used
with both mesh and geometry representations of the geometric domain. This document will briefly outline
the rendezvous algorithms as implemented in DTK. An example of data transfer using a conjugate heat
transfer calculation and a thermal-neutronics type coupling is provided. Parallel scaling results are also
presented for the mesh-based mapping algorithm for a worse-case-scenario problem where communication
costs are at a maximum.

2. GEOMETRIC RENDEZVOUS

Relating two non-conformal meshes will ultimately require some type of data evaluation algorithm to
apply the data from one geometry to another. To drive these evaluation algorithms, the target objects to
which this data will be applied must be located within the the source geometry. In a serial formulation,
efficient search structures that offer logarithmic asymptotic time complexity are available to perform this
operation. However, in a parallel formulation, if these two geometries are arbitrarily decomposed,
geometric alignment is not likely and a certain degree of parallel communication will be required. A
geometric rendezvous manipulates the source and target geometries such that all geometric operations and
data evaluation operations have a local formulation while data transfer occurs globally.

A geometry that is providing data through evaluations will be referred to as the source geometry while the
geometry that will be receiving the data will be referred to as the target geometry. Although explicitly
formulated with a source mesh and target vertices below, these concepts can be applied to geometric
structures beyond mesh and vertices.

2.1. Rendezvous Decomposition

The geometric rendezvous concept uses a global formulation for the data transfer while maintaining a local
formulation for the geometric search operations by generating a secondary decomposition of the geometric
structures in the problem. This secondary decomposition is generated by a geometry-based repartitioning
for more load-balanced searching algorithms. This repartitioning is shown in the example presented in
Figure 1 where two meshes, one of triangles and one of quadrilaterals, are decomposed into four partitions,
shown by color, that are not correlated to one another. To transfer data between these meshes, each partition
in both meshes will need to communicate data to each partition in the other mesh due to their geometric
overlap. The rendezvous decomposition, shown on the right, is a geometrically balanced repartitioning of
the source mesh in the transfer problem with the partitioning information shared amongst both meshes.
The components of both meshes that are required for data transfer will be gathered into this new partition.
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Figure 1. Rendezvous decomposition example. A triangle mesh (left) and a quadrilateral mesh (center) are
partitioned into 4 parallel domains as indicated by color. The rendezvous decomposition (right) is generated
as a geometric-based repartitioning of the source mesh that permits load balanced geometric operations.

In DTK, the rendezvous algorithm developed by Plimpton et. al. [4] for mesh-based data transfer generates
the rendezvous decomposition which behaves as a hierarchical parallel and geometric search tree. Using
this algorithm, a secondary decomposition of a subset of the source mesh that will participate in data
transfer is generated, forming the rendezvous decomposition as described in the example above. The
rendezvous decomposition is encapsulated as a separate entity from the original geometric description of
the domain. It can be viewed as a temporary copy of the source mesh subset that intersects the target
geometry.

With the rendezvous decomposition, we effectively have a search structure that spans both parallel and
physical space. We first search parallel space by querying the rendezvous decomposition generated during
repartitioning. Global recursive coordinate bisectioning parameters are maintained for global partitioning
information, meaning that a destination process in the rendezvous decomposition can be determined for
any point on any process [7]. Although this is a search over parallel space, because of the geometric nature
of the rendezvous decomposition it is also a search over physical space with each process in the rendezvous
decomposition owning a specific subset of the mesh (with marginal overlap at the boundaries).

Once points have been accumulated in the rendezvous decomposition, the local kD-tree that is formed over
the local mesh can be utilized. By searching the kD-tree in logarithmic time, a subset of the mesh that is in
the vicinity of the target point is generated [8]. This subset, which is typically much smaller than the mesh
owned by a particular rendezvous process, is then searched with a more expensive point-in-element
operation that transforms the point into the reference frame of each mesh element in the subset with a
Newton iteration strategy. This mapped point is then checked against the canonical reference cell of that
mesh element’s topology to determine if the point is contained within.

2.2. Parallel Topology Maps

A set of mapping algorithms based on geometric rendezvous are implemented within DTK that apply
specifically to shared domain problems. A shared domain problem is one in which the geometric domains
of the source and target intersect over all dimensions of the problem. Figure 2 gives an example of a shared
domain problem in 3 dimensions. Here, Ω(S) (yellow) is the source geometry, Ω(T ) (blue) is the target
geometry, and Ω(R) (red) is their intersection and the shared domain over which mapping and the
rendezvous decomposition will be generated. The purpose of these mapping algorithms is to efficiently

3/11



Slattery, Wilson, and Pawlowski

Ω(T)

Ω(S)

Ω(R)

Figure 2. Shared domain example. Ω(S) (yellow) is the source geometry, Ω(T ) (blue) is the target geome-
try, and Ω(R) (red) is the shared domain.

generate a parallel topology map and the associated parallel communication plan that can carry out the data
transfer repeatedly with the minimum required number of parallel messages and data. A parallel topology
map is an operator, M , that defines the translation of a field, F (s) : RD → RN , from a source spatial and
parallel domain, ΩS , to a field, G(t) : RD → RN , in the target spatial and parallel domain ΩT , such that
G(t)←M(F (s)) and M : RN → RN , ∀r ∈ [ΩS ∩ ΩT ], where N is the dimensionality of the field and D
the dimensionality of the spatial domain. It then follows that the geometric rendezvous is defined as a
geometric-based parallel redistribution of the original source and target geometries defined over the region
ΩR = ΩS ∩ ΩT .

These maps are generated by creating source/target pairs found by searching the rendezvous
decomposition. For each target object for which data are desired, the rendezvous decomposition is
searched with that object to find the corresponding source object. In the case of finite element interpolation,
the target object would be a quadrature point in the target finite element mesh and the source object would
be a source element in the source finite element mesh that contains the target point. The map would then
drive the field evaluation, G(t)←M(F (s)), for all source/target pairs. Embedded within the map is a
communication plan that describes the communication sequence for transferring the data from the source
geometry to the target geometry. Once the field evaluations are complete, the communication sequence
moves that data from the source geometry decomposition to the target geometry decomposition to
complete the data transfer and the application to the map operator.

2.3. Extension to General Geometries

To handle software components that have a geometric entity-based representation (e.g. a sub-channel code
discretized with a control volume approach representing the geometry), the above algorithms have been
extended to operate on a general geometric description. The mesh-based algorithm above is purely
geometric, with each element in the mesh treated as a separate geometric entity. If this is the case, then
other geometries such as annular rings, cubes, or any other irregular shapes should apply to the algorithm.
To extend the above algorithm, we require a geometric entity to provide a small set of information
including point inclusion tests, the bounding box of the entity, centroid, and dimensionality. With this
information, the RCB partitioning can be generated and the geometry repartitioned to the rendezvous
decomposition. With the repartitioned geometry data we can then perform a proximity search followed by
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the more expensive point inclusion checks.

Given these new search structures, variations of the algorithms presented in [4] can be generated to apply to
data transfer problems beyond mesh-based interpolation. DTK includes a geometric data evaluation
algorithm, very similar to the original algorithm where data is applied to points in the domain based on the
field discretization in the geometry rather than mesh elements. Geometry-to-geometry transfers are
available when the two physics components being coupled derive their geometric description from the
same source. This is useful in cases such as transferring fuel temperatures from a geometric zone in one
physics application to the same geometric zone in another application. Finally, for cases where
volume-averaged quantities are desired, typically an integral is evaluated over some volume of space. To
support these operations, DTK contains algorithms for integrating mesh-based fields over the geometry that
the mesh has discretized, providing an effective means for integral assembly mesh-to-geometry transfers.

3. DATA TRANSFER EXAMPLE USE CASE

This section demonstrates an important DTK use case for CASL. A goal of the CASL program [3] is to
develop an advanced simulator capability for a pressurized light water reactor core. To achieve this, two
large-scale parallel codes have been coupled using DTK, a thermal hydraulics (TH) code [9] and a
neutronics (NE) code [10]. The TH code performs a multiphysics conjugate heat transfer simulation where
energy conservation equation is solved in the fuel pins and energy, momentum and mass conservation
equations are solved in the fluid surrounding the fuel pins. The TH simulation uses fully coupled fully
implicit Newton-Krylov solvers with algebraic multigrid preconditioning [11]. The NE code uses a discrete
ordinates solution to the radiation transport equation with both energy and spatial domain decomposition to
achieve high levels of parallelism. In this coupling, DTK is leveraged to transfer data in parallel between
the codes and a simple block Gauss-Siedel iteration loop is used to converge the global coupled system.
Both physics codes have been demonstrated to run on leadership class machines with greater than 100,000
cores.

The solution is spatially distributed across processes, requiring the use of DTK to identify and execute an
efficient communication plan for data transfer. For NE to TH coupling, the NE code supplies source terms
used by the energy conservation equation in the fuel pins of the TH code. A point-to-point data transfer is
required where the TH code requires source term values at the quadrature points for the finite element
integration with the mapping generated by the DTK mesh-to-mesh rendezvous capability. For TH to NE
coupling, the TH code supplies average temperatures for a section of the fuel pin to the NE code for the
cross-section calculations. The DTK mesh-to-geometry integral assembly mapping is used to provide cell
integrated contributions to the total average temperature for the geometric entity (fuel pin section). Sample
2D verification simulations from this work are provided in the following section.

3.1. Data Transfer Verification

A simplified form of the full physics simulation was used to verify the parallel data transfer. An analytic
solution for the source term was prescribed in the NE code and transferred to the TH code. The simulation
was performed on 10 cores with TH using 5 cores and NE using the remaining 5 cores. Figure 3 shows the
parallel decomposition for each application code with the TH heat transfer and fluid domains shown in
Figure 4 on the left. Note that the NE code uses a structured mesh while the TH code uses an unstructured
mesh. Results showed that data was transferred correctly with machine precision accuracy using DTK. A
plot of the transferred verification function (source = x ∗ y) is shown in Figure 4 on the right.
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Figure 3. Parallel decomposition for coupled NE/TH verification. The colors indicate ownership of the ele-
ment by a core. In this example, a 10 core job is run with the thermal hydraulics and neutronics applications
each owning 5 cores on separate processor spaces.

Figure 4. (Left) Verification simulation domain space consisting of a top-down view of a single fuel pin
surrounded by a fluid region. The blue region represents the fluid area and the red region represents the solid
fuel pin. (Right) Multiphysics domain space.

4. PARALLEL SCALING STUDY

As indicated by the CASL use cases above, the current physics codes leveraged scale to leadership class
computing facilities. A typical use case of DTK in these cases is searching a mesh with a set of points and
applying field data to those points through function evaluations. For this use case, a scaling study of the
mesh-based DTK implementation of the rendezvous algorithm for data transfer was performed utilizing the
Jaguar Cray XK6 system at Oak Ridge National Laboratory in order to assess performance at these high
levels of parallelism. For each study, a tri-linear hexahedron mesh was generated to represent the source
and decomposed across the parallel domain. Each partition had one element in the z direction while the x
and y directions were varied to produce the desired number of elements in the partition. All source mesh
partitions in each scaling study are square. To simulate a worst-case problem from an algorithmic
complexity perspective, a surrogate target mesh with vertices partitioned at random is generated by
sampling the x and y directions over the full global mesh domain. The result of the random parallel
partitioning of target mesh vertices is that each parallel process will asymptotically contain target mesh
vertices that exist in the geometrically partitioned source mesh on all processes. Each process will be
guaranteed a unique set of random target mesh vertices by striding the random number seed used to
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generate the vertex coordinates. For each scaling study, every process generated the same number of
random vertices as the number of elements on that process, ensuring that a dense, all-to-all communication
operation will be required for mapping and data transfer. Once the target vertices are mapped to the source
mesh, the data transfer routine applies the process rank in which they were found and transfers it back to
the original owning process for the vertex. In this way, because of the simple partitioning used for the
scaling studies, the results of the data transfer to the random vertices can be independently verified by
checking the applied data against the expected mesh process rank.

4.1. Weak Scaling

For the weak scaling study, the number of hexahedrons and random target vertices per partition was fixed
to 1× 104. The number of cores used varied from 16 to 115,072. Figure 5 gives the results of the weak
scaling study. The largest case reported here uses 115,072 cores and required 10.44 minutes for map
generation and 0.48 seconds for data transfer with a mesh size of 1.15× 109 elements. It is clear from the
weak scaling study that at high numbers of processors communication latency begins to dominate for this
dense all-to-all problem as described above. However, it is worth noting that once the mapping is complete,
wall time for the actual transfer of the data is several orders of magnitude less.

Figure 5. Weak scaling study results. The solid black curve reports the wall time to generate the mapping
vs. number of processors while the solid red curve reports the wall time to transfer the data vs. number
of processors. The dashed lines give perfect weak scaling the map generation (black) and the data transfer
(red).

Table I gives the raw data for the weak scaling study. We note here that both the map generation time and
the data transfer time are relatively load balanced with average compute times reported near the maximum
compute time. In addition it should be noted that for even the largest case at 115,072 cores the wall time is
not prohibitively large with the map generation routine requiring approximately 10.44 minutes and the data
transfer routine requiring less than half a second.

The efficiency values for the map generation and data transfer routines are also reported in Table II with the
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16 core case used as the reference computation. In correlation with the data presented in Table I, the
efficiencies are observed to be low above 1,000 cores for this dense all-to-all communication problem. For
more physical coupling problems where the communication is expected to be much sparser, this gives an
idea of just how sparse that communication must be for this algorithm to scale well.

Global Map Map Map Transfer Transfer Transfer
Cores Elements Min (s) Max (s) Average (s) Min (s) Max (s) Average (s)

16 1.600E+05 2.63 2.65 2.635 0.06 0.07 0.062
128 1.280E+06 3.25 3.31 3.30 0.06 0.07 0.063
512 5.120E+06 3.58 3.86 3.84 0.06 0.08 0.067
1,024 1.024E+07 3.98 4.53 4.48 0.06 0.09 0.076
4,096 4.096E+07 6.54 8.51 8.39 0.13 0.15 0.141
16,384 1.638E+08 15.98 27.0 23.73 0.28 0.32 0.296
32,768 3.277E+08 40.03 68.18 62.88 0.36 0.39 0.375
65,536 6.554E+08 214.69 239.21 234.76 0.41 0.45 0.429
115,072 1.151E+09 570.12 626.51 616.675 0.42 0.48 0.450

Table I. Weak scaling study data with the local problem size fixed to 1.0E4 elements/points. All times
reported in seconds. Minimum, maximum, and average timing values are global and computed using the
results from all processes.

Cores Map Efficiency Transfer Efficiency

16 1.000 1.000
128 0.800 0.974
512 0.687 0.911
1,024 0.581 0.812
4,096 0.314 0.434
16,384 0.111 0.206
32,768 0.042 0.164
65,536 0.011 0.143
115,072 0.004 0.136

Table II. Weak scaling efficiencies. The 16 process case was used as the reference case.

Compared to the weak scaling results observed by Plimpton and colleagues for a similar dense
communication problem [4], these results show the same qualitative behavior (see figure 7 in the reference).
As the Jaguar system improves on all aspects of machine performance over those used in the 2004 work, it
is expected that larger problems may be solved before the bandwidth limiting behavior is observed.

4.2. Strong Scaling

For the strong scaling study, the global number of hexahedrons and random target vertices was fixed to
1× 108 with the number of cores varied from 256 to 65,536. Figure 6 gives the results of the strong scaling
study. Again, we note for the all-to-all communication pattern required to map the random vertices that
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latency again begins to dominate when a few thousand cores are used while the data transfer scaling is
excellent. The raw data for this study is presented in Table III. We see again that the algorithm is relatively
load balanced with average compute times near the maximum reported compute times for the map
generation operation. Table IV gives the efficiencies computed for the strong scaling study with the 256
processor case used as the reference.

Figure 6. Strong scaling study results. The solid black curve reports the wall time to generate the mapping
vs. number of processors while the solid red curve reports the wall time to transfer the data vs. number of
processors. The dashed lines give perfect strong scaling the map generation (black) and the data transfer
(red).

Local Map Map Map Transfer Transfer Transfer
Cores Elements Min (s) Max (s) Average (s) Min (s) Max (s) Average (s)

256 3.91E+05 149.58 150.04 149.883 198.99 199.81 199.72
1,024 9.77E+04 36.08 36.68 36.60 5.52 5.59 5.55
4,096 2.44E+04 12.12 14.18 14.0558 0.37 0.45 0.04
16,384 6.10E+03 9.16 15.75 14.787 0.15 0.18 0.162
32,768 3.05E+03 7.42 17.92 14.33 0.06 0.10 0.080
65,536 1.53E+03 205.54 232.01 227.07 0.02 0.05 0.034

Table III. Strong scaling study data. All times reported in seconds. Minimum, maximum, and average
timing values are global and computed using the results from all processes.

5. CONCLUSIONS

We have presented the Data Transfer Kit, a new tool for parallel data transfer for multiphysics applications.
The concept of geometric rendezvous is used to provide a collection of mesh and geometry-based
mappings for data transfer in shared domain problems. Initial scaling studies have been completed for the
Data Transfer Kit on the Jaguar Cray XK6 system. Their results show comparable qualitative behavior to
the literature results with improved performance due to the more advanced computational resources
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Cores Map Efficiency Transfer Efficiency

256 1.000 1.000
1,024 1.024 8.989
4,096 0.666 27.84
16,384 0.158 19.24
32,768 0.082 19.62
65,536 0.003 22.71

Table IV. Strong scaling efficiencies. The 256 process case was used as the reference case.

available with good scaling for the data transfer operation at O(1× 105) cores. However, for the dense
communication patterns required to complete the scaling study problem, poor weak scaling results are still
observed above O(1× 104) cores for the mapping operation. For data transfer problems where the
underlying mesh or geometry does not change, the wall times observed for the mapping algorithm to be
performed may not be prohibitive as that operation will only be performed once during a setup phase for
the problem. Once the map is generated, it and the resulting parallel communication plan can be used
repeatedly in the data transfer operation with excellent scaling and minimal wall time observed for meshes
of O(1× 109) elements.

It is expected for more physical data transfer problems that the overall communication pattern will be
significantly sparser than the problem presented here. Because of this, scaling for the mapping algorithm is
expected to improve for more physical problems. Further scaling studies will be required to test this
hypothesis. In addition, Data Transfer Kit has the potential to be extended to provide surface-to-surface
mappings for interface data transfers.
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