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Abstract. We consider a heat transfer problem with sliding bodies,
where heat is generated on the interface due to friction. Neglecting
the mechanical part, we assume that the pressure on the contact in-
terface is a known function. Using mortar techniques with Lagrange
multipliers, we show existence and uniqueness of the solution in the
continuous setting. Moreover, two different mortar formulations are
analyzed, and optimal a priori estimates are provided. Numerical re-
sults illustrate the flexibility of the approach.

Key words. Mortar finite elements, Lagrange multiplier, saddle point
problem, domain decomposition, interface problem.

Mathematics Subject Classification (1991): 65N30, 65N55

1. Introduction

We consider here the problem of two bodies sliding on each other
and generating heat due to contact friction (see also [10,13,14,16,
19,23]). We denote by Ωk ⊂ Rd, d ∈ {2, 3}, the two disjoint regions
occupied by the bodies during the sliding process, and by ∂Ωk the
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corresponding piecewise smooth boundaries for k = 1, 2. The surface
of the bodies is decomposed into two parts: the first Γ c, Γ c := ∂Ω1 ∩
∂Ω2, representing the common contact area of the two bodies, the
second, Γ s

k is given by

Γ s
k := ∂Ωk\Γ c, k = 1, 2.

In order to investigate the heat conduction during the sliding process,
we introduce the variable uk(t, x) denoting the temperature distri-
bution of the corresponding body depending on the time t ∈ [0, T ],
where T > 0 is a prescribed time-level, and the space variable x ∈ Ωk.
Neglecting the mechanical part, we consider the heat equation given
by

ρkck
∂uk

∂t
(t, x) −∇ · (αk∇uk(t, x)) = fk(t, x) in (0, T ) ×Ωk, (1)

for k = 1, 2. A complete thermo-mechanical model can be found in
[13,23]. Here ρk, ck and αk represent the density, the specific heat
and the thermal conductivity respectively, and fk ∈ L2(Qk,T ) is the
heat source within Ωk. Moreover, the temperature distribution has
to satisfy the following initial and boundary conditions: for k = 1, 2

uk(0, x) = u0
k(x) in Ωk, for t = 0, (2)

−αk∇uk(t, x) · nk = qfr
k (t, x) + qex

k (t, x) on Γ c
T := (0, T ) × Γ c, (3)

−αk∇uk(t, x) · nk = qco
k (t, x) on Γ s

k,T := (0, T ) × Γ s
k ,(4)

where u0
k ∈ L2(Ωk) is the initial temperature, nk is the outward unit

normal vector of ∂Ωk and qfr
k , qex

k and qco
k are given by

qfr
1 (t, x) = −cDβv(t, x)p(t, x) on Γ c

T , (5)

qfr
2 (t, x) = −cD(1 − β)v(t, x)p(t, x) on Γ c

T , (6)

qex
1 (t, x) = α̂(u1(t, x) − u2(t, x)) on Γ c

T , (7)

qex
2 (t, x) = α̂(u2(t, x) − u1(t, x)) on Γ c

T , (8)

and

qco
1 (t, x) = σ1(u1(t, x) − u∞) on Γ s

1,T , (9)

qco
2 (t, x) = σ2(u2(t, x) − u∞) on Γ s

2,T . (10)

For k = 1, 2, (3) represents the transmission conditions on the
interface Γ c

T given in terms of the heat fluxes α1∇u1(t, x) · n1 and
α2∇u2(t, x) ·n2 flowing out of the first and second body, respectively.
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In particular, each heat flux αk∇uk(t, x) ·nk consists of two parts: the

first, qfr
k (t, x) (see (5)-(6)) arises from the frictional dissipation and

involves the frictional constant cD (from experiment, cD ≤ 1), and
the parameter β := α1

α1+α2
. Here v(t, x) and p(t, x) are the relative

velocity of the bodies and the contact pressure, respectively. The sec-
ond part, qex

k (t, x) (see (7)-(8)) represents the heat exchange arising
from the different temperatures of the bodies at the contact inter-
face. The heat transfer parameter α̂ = α̂(p) depends on the pressure
p, and we assume here to satisfy α̂(p) ≥ 0. Finally, for k = 1, 2, (4)
represents boundary conditions of Robin type given in terms of the
convective heat flux qco

k (t, x) (see (9)-(10)), where σ1 > 0 and σ2 > 0
are coefficients of the surface heat transfer and u∞ is the ambient
temperature of the surrounding medium.

We present here an approach based on mortar techniques and La-
grange multipliers, which well suits to treat discontinuous solutions
and for allowing non-matching grids across the subdomain bound-
aries.

The structure of the rest of the work is as follows: Section 2 is de-
voted to the formulation of the continuous problem and to the presen-
tation of relevant results on well-posedness of the time-independent
problem. In Section 3, two discrete formulations are obtained and er-
ror estimates are given for two different approaches. Finally in Section
4, we show some numerical experiments.

2. The saddle point formulation

We start by introducing the functional spaces we will work with. We
denote by X := H1(Ω1) ×H1(Ω2) the unconstrained product space
endowed with the broken norm

‖w‖2
X := ‖w‖2

1,Ω1
+ ‖w‖2

1,Ω2
,

and by M2 := H
1

2 (Γ c) and M1 := (H
1

2 (Γ c))
′

the trace space on the
common interface and the corresponding dual space, respectively. To
simplify the readability of the forthcoming formulas, we use the non-

standard notation H− 1

2 (Γ c) := (H
1

2 (Γ c))
′

for the dual space. From
now on, we skip the space and time variables of our unknowns, where
there is no ambiguity.
We introduce the heat flux on Γ c

T from the second body, λ(t, x) :=
α2∇u2(t, x) · n2 ∈ L2(0, T ;M1), as a Lagrange multiplier which, ac-
cording to (6) and (8), can be written as

λ = cD(1 − β)vp + α̂[u], (11)
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where [u] := u1 − u2 denotes the jump of the temperature across Γ c
T .

The mortar formulation is now obtained by considering the weak form
of (1) and (11). We remark that, in contrast to the mortar approach
for the Laplace operator, where the constraint reads [u] = 0, we

cannot use H− 1

2 (Γ c) as test space for the constrained equation (11).

Here we have to work with H
1

2 (Γ c) itself. Denoting by < ·, · >Γ c the

duality pairing between H
1

2 (Γ c) and H− 1

2 (Γ c) on the interface, we

can write, for any ϕ ∈ H
1

2 (Γ c)

< λ(t), ϕ >Γ c=

∫

Γ c

cD(1−β)v(t, s)p(t, s)ϕ(s)ds+

∫

Γ c

α̂(p)[u(t, s)]ϕ(s)ds,

for t ∈ [0, T ]. The weak formulation of our partial differential equation
can be written as the following generalized saddle point problem: find
(u(t), λ(t)) ∈ L2(0, T ;X) × L2(0, T ;M1) such that

ρkck
d
dt

(u(t), w) + a(u(t), w) + b1(w, λ(t)) = (f(t), w), w ∈ X,
b2(u(t), ϕ) − c(λ(t), ϕ) = (g(t), ϕ), ϕ ∈M2,

(12)

where the bilinear forms a : X × X −→ R, b1 : X × M1 −→ R,
b2 : X ×M2 −→ R and c : M1 ×M2 −→ R are defined as follows

a(u,w) :=
2

∑

k=1

[

∫

Ωk

(

αk∇uk(x) · ∇wk(x)
)

dx+

∫

Γ s

k

σkuk(t, x)wk(x)ds
]

,

b1(w, λ) := < [w], λ >Γ c,

b2(u, ϕ) :=

∫

Γ c

α̂[u]ϕds,

c(λ,ϕ) := < λ,ϕ >Γ c,

and the right hand sides f(t) : X −→ R and g(t) : M2 −→ R as

(f(t), w) :=

∫

Ω

f(t, x)w(x)dx +

∫

Γ c

cDv(t, s)p(t, s)w(s)|Ω1

ds

+

2
∑

k=1

∫

Γ s

k

σku∞w(s)ds,

(g(t), ϕ) :=

∫

Γ c

cD(1 − β)v(t, s)p(t, s)ϕds.

We denote by ‖f(t)‖X
′ and ‖g(t)‖− 1

2
,Γ c the dual norms of the linear

operators f(t) and g(t), defined by

‖f(t)‖X
′ := sup

w∈X\{0}

|(f(t), w)|

‖w‖X
, ‖g(t)‖− 1

2
,Γ c := sup

ϕ∈M2\{0}

|(g(t), ϕ)|

‖ϕ‖ 1

2
,Γ c

.
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The mathematical analysis of generalized saddle point problems has
become a subject of different papers. We address the reader to [3,7,
17] for a deeper study on this subject. We remark that, due to the non-
symmetry of the bilinear form c(·, ·), existence and uniqueness of (12)
is not a straightforward consequence of the above mentioned results.
In order to prove the well-posedness of such a problem, we therefore
start by analyzing the continuous setting for the time-independent
case.

2.1. The time-independent problem

We aim here at proving existence and uniqueness of Problem (12) in
the stationary limit, that is when the temperature does not depend
on t. In this case the problem reads: find (u, λ) ∈ X ×M1 such that

a(u,w) + b1(w, λ) = (f,w), w ∈ X,
b2(u, ϕ) − c(λ,ϕ) = (g, ϕ), ϕ ∈M2.

(13)

In the following, we will use the notation A > B (resp. A ? B) to
signify that the quantity A is bounded from above (resp. below) by
C ·B, where C is a constant generally depending on the coefficients αk,
σk, α̂(p) and the aspect ratio of the subdomains, but not depending,
for the discrete setting, on the mesh size. Assuming σk ≥ σ0 > 0 for
k = 1, 2, it is easy to show that the bilinear form a(·, ·) is coercive on
X. Moreover, we recall that the following inf-sup condition for the
bilinear form b1(·, ·) holds [12]: there exists β1 > 0 such that

∀q ∈M1, sup
w∈X

b1(w, q)

‖w‖X
≥ β1‖q‖− 1

2
,Γ c. (14)

We note that, choosing ϕ = [w] ∈M2 in (12) and using the definition
of b1(·, ·) and c(·, ·), we get

a(u,w) + b1(w, λ) + b2(u, [w]) − c(λ, [w]) = a(u,w) + b2(u, [w])

= f(w) + g([w]). (15)

As a result, Problem (12) can be rewritten: find u ∈ X such that

ã(u,w) = f̃(w), w ∈ X, (16)

where

ã(u,w) := a(u,w) + b2(u, [w]) and f̃(w) := f(w) + g([w]).

The following result holds:
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Theorem 1. Problem (12) admits a unique solution (u, λ) ∈ X×M1.
Moreover, denoting by γ the coercivity constant of a(·, ·), the following
stability estimates hold:

‖u‖X ≤ C1

(

‖f‖X
′ + ‖g‖− 1

2
,Γ c

)

,

‖λ‖− 1

2
,Γ c ≤ C2‖f‖X

′ + C3‖g‖− 1

2
,Γ c,

(17)

where

C1 = 1/γ, C2 =
1

β1

(

1 + ‖a‖/γ
)

, C3 =
1

β1
‖a‖/γ.

Proof. We start by considering (16). The continuity and coercivity
of the bilinear form ã(·, ·) follow directly from the properties of a(·, ·)
and the fact that b2(·, ·) ≥ 0. Furthermore, f̃(·) is also continuous.
Therefore, Problem (16) admits a unique solution u ∈ X. Once u is
given, existence and uniqueness of λ ∈M1 is retrieved from the second
line of (12). In order to prove (17), we start by choosing ϕ = [u] in
the first line of (12) and find

a(u, u) ≤ a(u, u) + b2(u, [u]) = f(u) + g([u]),

and thus

‖u‖2
X ≤

1

γ
a(u, u) ≤

(

‖f‖X
′ + ‖g‖− 1

2
,Γ c

)

‖u‖X . (18)

Moreover, according to (14) we can write

β1‖λ‖− 1

2
,Γ c ≤ sup

w∈X\{0}

b1(w, λ)

‖w‖X
= sup

w∈X\{0}

f(w) − a(u,w)

‖w‖X

≤ ‖f‖X
′ + ‖a‖‖u‖X ,

where ‖a‖ denotes the continuity constant of the bilinear form a(·, ·).
This yields, together with (18),

‖λ‖− 1

2
,Γ c ≤

1

β1
‖f‖X

′ +
‖a‖

β1γ

(

‖f‖X
′ + ‖g‖− 1

2
,Γ c

)

=
1

β1

(

1 +
‖a‖

γ

)

‖f‖X
′ +

‖a‖

β1γ
‖g‖− 1

2
,Γ c .

It is clear that the solution of the time independent problem (13) is a
solution of (16). Reversely, it is not difficult to verify that the couple
(u, λ), with u solution of (16) and λ retrieved from the second line of
equation (13), is a solution of equation (15).
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3. The discrete setting and error estimates

In this section, we introduce the finite element approximation spaces
Xh ⊂ X, Mh ⊂ M1 and Wh ⊂ M2, and we consider two different
discrete mortar formulations of Problem (1) which basically differ on
the evaluation of the bilinear form b2(·, ·) with respect to the second
argument. Moreover, optimal a priori error estimates are shown for
both approaches.
Let us introduce two independent shape regular meshes Th1

and Th2

on Ω1 and Ω2, with mesh-sizes bounded by h1 and h2, respectively.
In the forthcoming, to fix the ideas, the elements K of the meshes
will be either triangles (d = 2) or tetrahedra (d = 3), but it is not
difficult to see that the analysis contains all the ingredients also for
quadrilaterals (d = 2) or hexahedra (d = 3). We assume that the
meshes are quasi-uniform and that h1 > h2 and h2 > h1. Without
loss of generality, we choose the side of Γ c associated with Ω2 as
slave side and the one associated with Ω1 as master side. Moreover
we assume that Γ c is the complete (d− 1)-dimensional union of faces
of the elements on the slave side, inheriting its mesh from Th2

. We
denote by TΓ c the mesh on Γ c with mesh-size bounded by h2 whose
elements are boundary edges (d = 2) or faces (d = 3) of Th2

. The
unconstrained discrete finite element space is denoted by

Xh :=

2
∏

k=1

Xk
h ,

where Xk
h = {wh ∈ C0(Ωk) | wh|K ∈ P

1(K) , K ∈ Thk
} stands for

the space of linear conforming finite elements in the subdomain Ωk

associated to the mesh Thk
. We note that no interface condition is

imposed on Xh, and the elements in Xh do not have to satisfy a
continuity condition at the interface. Let Wh be the trace space of fi-
nite element basis functions from the slave side, i.e., of X2

h, restricted
to Γ c. The crucial point is that the Lagrange multiplier space Mh

should be defined in a suitable way so that the bilinear form b1(·, ·)
satisfies a suitable inf-sup condition. Here, we use a dual Lagrange
multiplier space such that ns := dimMh = dimWh and the following
biorthogonality property is satisfied (for details see [21]): denoting by
{µi}1≤i≤ns

and {ϕi}1≤i≤ns
the basis function of Mh and Wh, respec-

tively, it holds

∫

Γ c

µiϕjds = δij

∫

Γ c

ϕjds, 1 ≤ i, j ≤ ns. (19)
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3.1. First approach

With the choices of the discrete spaces introduced above, we can con-
sider the following Petrov–Galerkin mortar formulation: find (uh, λh) ∈
Xh ×Mh such that

a(uh, wh) + b1(wh, λh) = f(wh), wh ∈ Xh, (20)

b2(uh, ϕh) − c(λh, ϕh) = g(ϕh), ϕh ∈Wh. (21)

We point out that Mh ⊂ (H
1

2 (Γ c))
′

but Mh 6⊂ H
1

2 (Γ c), whereas

Wh ⊂ H
1

2 (Γ c). In order to analyze the approximation error in this
case, we recall well-known results. We denote by πh the mortar pro-
jection operator πh : L2(Γ c) −→Wh defined by

∫

Γ c

πhwµh ds =

∫

Γ c

wµh ds, µh ∈Mh. (22)

It has been proved [12] that πh is L2- and H1-stable. Moreover, by

space interpolation, the H
1

2 -stability holds

‖πhw‖ 1

2
,Γ c > ‖w‖ 1

2
,Γ c , w ∈ H

1

2 (Γ c). (23)

We point out that, in contrast with standard mortar approaches, we

work with the dual norm of H
1

2 (Γ c) and not with the dual norm of

H
1

2

00(Γ
c). The validity of the uniform discrete inf-sup condition [12]

‖µh‖− 1

2
,Γ c ≤ C sup

wh∈Xh\{0}

b1(wh, µh)

‖wh‖X
(24)

yields the following result [6,12]:

Theorem 2. The discrete variational problem (20)-(21) has a unique
solution (uh, λh) ∈ Xh ×Mh and the following a priori bounds hold

‖u− uh‖X > inf
wh∈Xh

‖u− wh‖X + inf
µh∈Mh

‖λ− µh‖− 1

2
,Γ c, (25)

‖λ− λh‖− 1

2
,Γ c > inf

wh∈Xh

‖u− wh‖X + inf
µh∈Mh

‖λ− µh‖− 1

2
,Γ c. (26)

Using the best approximation properties of Xh and Mh, we obtain
optimal a priori estimates for the solution u and for the Lagrange
multiplier λ. We refer to [12] for a proof of the following result.
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Corollary 1. Assume that u ∈
∏2

k=1H
rk+1(Ωk) with r1 ≥ 0 and

r2 >
1
2 . Then, we have the following a priori estimate for the dis-

cretization error

‖u− uh‖X > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

)
1

2 , (27)

‖λ− λh‖− 1

2
,Γ c > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

)
1

2 , (28)

where sk := min(1, rk), k = 1, 2. If 0 ≤ r2 ≤ 1
2 and λ ∈ Hr2−

1

2 (Γ c),
then we have

‖u− uh‖X > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

+h2r2

2 ‖λ‖2
r2−

1

2
,Γ c

)
1

2 . (29)

‖λ− λh‖− 1

2
,Γ c > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

+h2r2

2 ‖λ‖2
r2−

1

2
,Γ c)

1

2 . (30)

Remark 1. Using the same notation for the finite element solution
and its vector representation, we can write the algebraic formulation
of the variational equations (20)-(21) as

(

A BT
1

B2 −C

)(

uh

λh

)

=

(

fh

gh

)

, (31)

where the matrices A, B1, B2 and C correspond to the bilinear forms
a(·, ·), b1(·, ·), b2(·, ·) and c(·, ·), respectively, and fh and gh represent
the discrete forms of the linear forms f(·) and g(·), respectively. We
note that, as a consequence of the biorthogonality between the nodal
basis functions of the trace space Wh and the Lagrange multiplier
Mh, the mass matrix on the slave side of the matrix B1 is reduced to
a diagonal one as well as the matrix C. However, due to the choice of
the test space in the second equation of equation (12), we cannot take
advantage of the biorthogonality property for the mass matrix on the
slave side of the matrix B2 as well. As a result, the Lagrange multiplier
can be locally eliminated but no local static condensation for the
degrees of freedom on the slave side of the interface can be carried
out. Thus we cannot apply the multigrid schemes introduced in [21,
22] as iterative solvers. In the next subsection, we provide a second
approach where both sets of variables can be locally eliminated.
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3.2. Second approach

We consider the case that the heat transfer parameter α̂ is constant
and strictly positive, so that the bilinear form b2(·, ·) has the form
b2(u, ϕ) = α̂

∫

Γ c [u]ϕds. The idea is to introduce here a discrete ap-
proach that allows us to statically condense out the degree of free-
dom on the slave side of the interface in such a way that the global
linear system is symmetric and positive definite and special multi-
grid techniques , such as the one proposed in [22], can be applied.
To this aim, we introduce an isomorphism Ih : Mh → Wh defined as
Ihµh =

∑ns

i=1 αiϕi for each µh ∈Mh with µh =
∑ns

i=1 αiµi. We remark
that Ih is well-defined since dimMh = dimWh, and it is L2-bounded
with L2-bounded inverse. Using this isomorphism, we introduce an
alternative approach to the Petrov–Galerkin problem, which is given
as follows: find (ũh, λ̃h) ∈ Xh ×Mh such that

a(ũh, wh) + b1(wh, λ̃h) = f(wh), wh ∈ Xh, (32)

b2(ũh, µh) − c(λ̃h, Ihµh) = g(Ihµh), µh ∈Mh. (33)

We remark that Problem (32)-(33) differs from (20)-(21) by simply
replacing the evaluation of the bilinear form b2(·, ·) with respect to
the second argument. The algebraic form of the variational equations
(32)-(33) can also be written as in (31). Under the assumption that
α̂ is constant, it is not difficult to see that, after a proper reordering
of the unknowns, B1 and B2 can be written as

B1 =
(

0 M D
)T

and B2 = α̂BT
1 ,

where the entries of the mass matrices M and D are given by (m)ij :=
∫

Γ c ϕ
m
j µi dσ and (d)ij :=

∫

Γ c ϕ
s
j µi dσ, respectively. Here, µi denotes

the basis functions of Mh and ϕm
j and ϕs

j stand for the nodal basis
functions in Xh associated with the nodes on the master and on the
slave side of the interface Γ c, respectively. We note that the matrix
D is diagonal due to the use of a dual Lagrange multiplier space
and that C = D. Scaling the equation (33) with α̂−1, we arrive at a
symmetric saddle point system

(

A BT
1

B1 − 1
α̂
D

)(

uh

λh

)

=

(

fh
1
α̂
gh

)

. (34)

Hence, working with this second approach, static condensation of the
Lagrange multiplier can be done as in the first approach [12], but also
the degrees of freedom of the slave side of Γ c can be eliminated. As
a consequence, a multigrid approach for a positive definite system on
nonconforming spaces can be applied (see [22] for the mortar setting).
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Theorem 3. Problem (32)-(33) admits a unique solution (ũh, λ̃h) ∈
Xh ×Mh and the following error estimates hold:

‖u− ũh‖X > inf
wh∈Xh

‖u− wh‖X + inf
µh∈Mh

‖λ− µh‖− 1

2
,Γ c

+‖I−1
h πh[u] − [u]‖− 1

2
,Γ c , (35)

‖λ− λ̃h‖− 1

2
,Γ c > inf

wh∈Xh

‖u− wh‖X + inf
µh∈Mh

‖λ− µh‖− 1

2
,Γ c

+‖I−1
h πh[u] − [u]‖− 1

2
,Γ c . (36)

Proof. According to the definition of πh and to (33), it follows that

b1(wh, λ̃h) = c(λ̃h, Ih
(

I−1
h πh[wh]

)

)

= b2(ũh, I
−1
h πh[wh]) − g(Ih

(

I−1
h πh[wh]

)

). (37)

By substituting now (37) in (32), we end up with the following prob-
lem: find ũh ∈ Xh such that

ãh(ũh, wh) = f̃h(wh), wh ∈ Xh, (38)

where the bilinear form ãh(·, ·) is defined as ãh(ũh, wh) := a(ũh, wh)+
b2(ũh, I

−1
h πh[wh]), and the right hand side is given by f̃h(wh) :=

f(wh) + g(πh[wh]). We note that, according to the definition of the
mortar projection (22), and to the biorthogonality property (19), the
bilinear form b2(·, ·) satisfies: for πh[vh] =

∑ns

i=1 αiϕi,

b2(vh, I
−1
h πh[vh]) ?

∫

Γ c

πh[vh]I−1
h πh[vh]ds =

∫

Γ c

∑

i

αiϕi

∑

j

αjµjds

=
∑

i

α2
i

∫

Γ c

ϕids.

According to the positivity of the basis functions ϕi ([21]) this yields,
together with the ellipticity of the bilinear form a(·, ·), that the bilin-
ear form ãh(·, ·) is positive definite. Moreover, it is uniformly coercive
on Xh ×Xh, the coercivity constant being the coercivity constant γ
of a(·, ·). Therefore, Problem (38) admits a unique solution ũh. Exis-
tence and uniqueness of λ̃h ∈ Mh easily follows from (33) by simply
remarking the invertibility of the bilinear form c(·, ·). In order to de-
rive the error estimates, we first observe that the bilinear form ãh(·, ·)
is well defined at (u, vh). Moreover, according to the L2-stability of
the mortar projection πh, and recalling that I−1

h is an isomorphism
from Wh onto Mh with obvious equivalence of the L2-norm, it is easy
to prove that ãh(·, ·) verifies

|ãh(u− wh, vh)| ≤ γ∗‖u− wh‖X‖vh‖X , wh, vh ∈ Xh,



12 S. Falletta, B.P. Lamichhane

for a suitable constant γ∗ independent of h. Then the following Strang
inequality is obtained by a standard argument [20]:

‖u− ũh‖X ≤
(

1 +
γ∗

γ

)

inf
wh∈Xh

‖u− wh‖X

+
1

γ
sup

vh∈Xh\{0}

|f̃h(vh) − ãh(u, vh)|

‖vh‖X
. (39)

According to the definition of ãh(·, ·) and f̃h(·), we estimate the sec-
ond term of (39) by

|f̃h(vh) − ãh(u, vh)| = |f(vh) + g(πh[vh]) − a(u, vh) − b2(u, I
−1
h πh[vh])|

= |b1(vh, λ) − c(λ, πh[vh]) − b2(u, I
−1
h πh[vh] − πh[vh])|

≤

∫

Γ c

|λ([vh] − πh[vh])| ds

+

∫

Γ c

∣

∣[u](I−1
h πh[vh] − πh[vh])

∣

∣ ds. (40)

The definition and theH
1

2 -stability (23) of πh and the trace inequality
yield that, for any µh ∈Mh

∫

Γ c

|λ([vh] − πh[vh])| ds ≤ ‖λ− µh‖− 1

2
,Γ c‖[vh] − πh[vh]‖ 1

2
,Γ c

> ‖λ− µh‖− 1

2
,Γ c‖vh‖X . (41)

In order to estimate the second term of (40), we first note that the
biorthogonality property of the basis functions of Mh and Wh yields
the identity

∫

Γ c

ϕhI
−1
h ψhds =

∫

Γ c

I−1
h ϕhψhds, ϕh, ψh ∈Wh (42)

which, by using (22) and (23), allows to write
∫

Γ c

∣

∣[u](I−1
h πh[vh] − πh[vh])

∣

∣ ds =

∫

Γ c

∣

∣πh[u]I−1
h πh[vh] − [u]πh[vh]

∣

∣ ds

=

∫

Γ c

∣

∣(I−1
h πh[u] − [u])πh[vh]

∣

∣ ds

> ‖I−1
h πh[u] − [u]‖− 1

2
,Γ c‖vh‖X . (43)

Using (41) and (43) in (40), we finally get

sup
vh∈Xh\{0}

|f̃h(vh) − ãh(u, vh)|

‖vh‖X

> inf
µh∈Mh

‖λ− µh‖− 1

2
,Γ c

+‖I−1
h πh[u] − [u]‖− 1

2
,Γ c ,
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which together with (39) gives (35). In order to estimate the term
‖λ − λ̃h‖− 1

2
,Γ c, we first remark that, by subtracting (32) from (20),

we get

a(uh − ũh, wh) + b1(λh − λ̃h, wh) = 0, wh ∈ Xh,

which, together with the inf-sup condition (24) and the continuity of
the bilinear form a(·, ·), yields ‖λh − λ̃h‖− 1

2
,Γ c > ‖uh − ũh‖X .

Corollary 2. Assume that the exact solution u satisfies the same
hypothesis of Corollary 1. The following error estimates hold: if r1 ≥
0 and r2 >

1
2

‖u− ũh‖X > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

)
1

2

‖λ− λ̃h‖− 1

2
,Γ c > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

)
1

2 .

If 0 ≤ r2 ≤ 1
2 and λ ∈ Hr2−

1

2 (Γ c)

‖u− ũh‖X > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

+ h2r2

2 ‖λ‖2
r2−

1

2
,Γ c)

1

2

‖λ− λ̃h‖− 1

2
,Γ c > (h2s1

1 ‖u‖2
s1+1,Ω1

+ h2s2

2 ‖u‖2
s2+1,Ω2

+ h2r2

2 ‖λ‖2
r2−

1

2
,Γ c)

1

2 .

Proof. In terms of Theorem 3 and Corollary 1, it is sufficient to con-
sider the quantity ‖I−1

h πh[u] − [u]‖− 1

2
,Γ c, to which we apply the tri-

angular inequality to get the bound

‖I−1
h πh[u] − [u]‖2

− 1

2
,Γ c >

∑

e∈TΓc

‖I−1
h πh[u] − [u]‖2

− 1

2
,e

>
∑

e∈TΓc

(

‖I−1
h πh[u] − ce‖

2
− 1

2
,e

+‖[u] − ce‖
2
− 1

2
,e

)

, (44)

where ce is an arbitrary constant depending on the edge or face e ∈
TΓ c such that ce = I−1

h πh(ce) (see [21] for details on the property

of the operator I−1
h of preserving the constant functions). We now

aim at estimating the quantity ‖I−1
h πh([u] − ce)‖

2
− 1

2
,e
. Denoting by

Qh := I−1
h πh, we write

‖Qhf‖− 1

2
,e := sup

ϕ∈H
1

2 (e)

∫

e
(Qhf)ϕds

‖ϕ‖ 1

2
,e

= sup

ϕ∈H
1

2 (e)

∫

Γ c(Qhf)ϕ̃ ds

‖ϕ‖ 1

2
,e

,
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where ϕ̃ is the extension by zero of ϕ to the whole Γ c. According to
the definition of πh and to (42), it is easy to prove that Qh is self
adjoint, so that

‖Qhf‖− 1

2
,e = sup

ϕ∈H
1
2 (e)

∫

ẽ
f(Qhϕ̃) ds

‖ϕ‖ 1

2
,e

,

where ẽ denotes the support of Qhϕ̃ (which coincides with a patch
of elements near e). Therefore, for arbitrary 0 < ǫ < 1

2 , by using an
inverse estimate, the property of Clement’s operators [5,8], as well
as the well known injection Hs(e) →֒ Hs

0(e), u ∈ Hs(e), s ∈ (0, 1
2),

where the injection bound is given by ([4])

‖u‖Hs
0
(e) >

1
1
2 − s

‖u‖Hs(e),

we can bound

‖Qhf‖− 1

2
,e ≤ sup

ϕ∈H
1

2 (e)

‖f‖− 1

2
,ẽ‖Qhϕ̃‖ 1

2
,ẽ

‖ϕ‖ 1

2
,e

> sup

ϕ∈H
1

2 (e)

h−ǫ
e ‖f‖− 1

2
,ẽ‖Qhϕ̃‖ 1

2
−ǫ,ẽ

‖ϕ‖ 1

2
,e

> sup

ϕ∈H
1

2 (e)

h−ǫ
e ‖f‖− 1

2
,ẽ‖ϕ̃‖ 1

2
−ǫ,˜̃e

‖ϕ‖ 1

2
,e

> sup

ϕ∈H
1

2 (e)

h−ǫ
e ‖f‖− 1

2
,ẽ‖ϕ‖

H
1
2
−ǫ

0
(e)

‖ϕ‖ 1

2
,e

> sup

ϕ∈H
1

2 (e)

h−ǫ
e

ǫ
‖f‖− 1

2
,ẽ‖ϕ‖H

1

2
−ǫ(e)

‖ϕ‖ 1

2
,e

>
h−ǫ

e

ǫ
‖f‖− 1

2
,ẽ,

where we have denoted by˜̃e a suitable patch of elements of TΓ c with
ẽ ⊂ ˜̃e containing only a finite number of elements of TΓ c. Choosing
ǫ = 1/| log he|, we get ‖Qhf‖− 1

2
,e > | log he|‖f‖− 1

2
,ẽ which, in (44)

yields

‖I−1
h πh[u] − πh[u]‖2

− 1

2
,Γ c

>
∑

e∈TΓc

(

(log he)
2‖[u] − ce‖

2
− 1

2
,ẽ

+‖[u] − ce‖
2
− 1

2
,e

)

.
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Since ẽ contains only a finite number of elements of Γ c, the estimate
is obtained by choosing ce as the orthogonal projection of [u] onto
the space of constant functions in e. Therefore we finally get

‖I−1
h πh[u] − πh[u]‖2

− 1

2
,Γ c >

∑

e∈TΓc

(

(log he)
2he‖[u] − ce‖

2
0,ẽ

+he‖[u] − ce‖
2
0,e

)

> (log h2)
2h2

(

h2s1+1
1 ‖u‖2

s1+ 1

2
,Γ c

+h2s2+1
2 ‖u‖2

s2+ 1

2
,Γ c

)

> (log h1)
2h2s1+2

1 ‖u‖2
s1+1,Ω1

+(log h2)
2h2s2+2

2 ‖u‖2
s2+1,Ω2

,

which yields the thesis observing that the quantities | log h1|h1 and
| log h2|h2 are bounded.

Remark 2. Equation (38) is the discrete form of (16), which has been
introduced for theoretical purpose. It gives rise to a third discrete
approach that could in principle be considered. We remark that, in
analogy with the situation that occurs in the mortar approach for
the Laplace operator (where one can consider either the saddle point
formulation on the unconstrained space or the plain formulation in
the constrained one), the mortar projections that have to be com-
puted in this case are inside the definition of the bilinear form ã(·, ·)
of equation (16). Such projections are computed by using Lagrange
multiplier spaces and give rise to an equivalent saddle point approach.
Moreover, error estimates for the Lagrange multiplier cannot be ob-
tained from (16).

Remark 3. Alternative techniques for handling interface conditions
and dealing with non-matching grids can be found in the penalty
formulations such as the Nitsche method [18] and interior penalty
method [1,2]. Originally proposed for enforcing Dirichlet boundary
conditions, they have been applied to interface problems. They basi-
cally consists of adding the penalty term h−1

∫

Γ c [u][v]ds (and addi-
tional consistency terms involving normal derivatives for the Nitsche
technique) that controls the jump of the solution across the interface.
We refer to [11] for an application of the Nitsche method to a station-
ary heat conduction problem with a discontinuity in the conductivity
across Γ c and an inhomogeneous conormal derivative condition on
the interface, and to [15] for an interior penalty method (strictly re-
lated to the discontinuous Galerkin method) leading to a symmetric
and positive definite problem with almost optimal order estimates.
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4. Numerical tests

In this section, we show some numerical examples using the approach
discussed in the previous section. We assume that the heat transfer
parameter α̂ is directly proportional to the contact pressure p on the
contact interface so that α̂ = γ̄cp, where γ̄c is the heat transfer coeffi-
cient, see [13,14]. The heat transfer parameter has the unit W/m2°C,
whereas the unit of γ̄c is W/N °C. A different model in which the heat
transfer parameter α̂ depends on the contact pressure p with the re-
lation α̂ = hs0

( p
Hc

)ǫ can be found in [23], where hs0
is the contact

resistance coefficient, Hc the Vickers hardness and ǫ a fixed exponent.

Example 1: In the first example, we test our numerical scheme
for a heat transfer problem through the contact interface introduced
in [13,14,16]. Here, we solve the steady state heat transfer problem
between two bodiesΩ1 := (0, 1.5)2, and Ω2 := (0, 1.5)×(1.5, 3), which
are in contact along the line y = 1.5, see the left picture of Figure
1. The material parameters for this problem are given by α = α1 =
α2 = 55W/m°C, and γ̄c = 1W/N °C. The temperature at the lower
boundary of Ω1 and the upper boundary of Ω2 is fixed to be θ1 =
100°C and θ2 = 200°C, respectively, and the other boundaries are
thermally isolated. This problem can be solved analytically, and the

exact solutions at the contact interface are given by u1 = (1+η)θ1+ηθ2

1+2η
,

and u2 = (1+η)θ2+ηθ1

1+2η
for Ω1 and Ω2, respectively, where η = γ̄cp

α
with p being the pressure per unit length. Since the exact solution
is piecewise linear, the numerical solution of the problem is exactly
the same as the analytical solution. The temperature at the contact
interface for both bodies versus the total contact pressure can be
found in the right picture of Figure 1. In this picture, the upper part
shows the temperature at the contact interface from Ω2, whereas the
lower part shows the temperature at the contact interface from Ω1.
In case of the perfect conductance, we obtain the temperature 150°C
from both sides.

Example 2: In this example, we compare the performance of both
approaches using discretization errors in the L2- and H1-norms. Here,
the domain Ω := (−1, 1)×(−1, 1) is decomposed into two subdomains
Ω1 and Ω2, where Ω2 is a circle with radius 0.5 centered at the origin,
and Ω1 := Ω\Ω̄2, see the left picture of Figure 2. Here, the interface Γ
is curved, and the analysis should also take into account the polygonal
approximation of the interface Γ . For the analysis of mortar methods
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with a curved interface, we refer to [9]. Setting α̂(p) = 1, we compute
the right hand side for the second variational equation as g := λ− [u],
where λ, and [u] are computed by using the exact solution. The exact
solutions in Ω1 and Ω2 are given, respectively as

u1 :=
(

x2 + y2 + 1
)

cos (x+ 2 y) + 2, u2 :=
(

x2 + y2
)

sin (2x+ y) .

The right-hand side and the Dirichlet boundary condition on ∂Ω are
computed by using the given exact solution. The discretization errors
in the L2 and H1-norms for both approaches are given in the right
picture of Figure 2. Both approaches yield the same qualitative and
almost the same quantitative results.

Example 3: In our third example, we consider the case of three
bodies, where an iron cube is sliding between two copper bodies Ω1 :=
(0, 5) × (0, 1)2 and Ω3 := (0, 5) × (0, 1) × (2, 3). The length unit is
set in centimeters. The iron cube Ω2 initially occupies the region
(2, 3) × (0, 1) × (1, 2), and begins to slide with the velocity 2cm/s to
the right, and when it reaches the right end returns back to the left
with the same velocity. In this way, the cube oscillates between the
left and right end points of Ω1 and Ω3. The material parameters for
copper are ρc = 8960kg/m3, cc = 385J/kg°C, αc = 386W/m°C; and
for iron are ρi = 7860kg/m3, ci = 444J/kg°C, αi = 80.2W/m°C. We
apply 1MPa pressure on the interface Γ at each time step and Robin
boundary condition is applied on the upper and lower boundaries of
Ω1 and Ω3 with Robin parameter σ1 = σ3 = 25000W/m2°C, whereas
the other boundaries are thermally isolated. The time discretization is
done by using the implicit Euler scheme, and the initial temperature
is set to be zero. The domain Ω := ∪3

k=1Ωk at time t = 0 with
the triangulation is shown in the left picture of Figure 3, and the
solutions at two different times computed using δt = 0.01 are shown
in the right. In the right picture of Figure 3, we can see the effect
of convective boundary condition on the lower surface of Ω1 and
the upper surface of Ω3, where the cooling process does not allow
this area to be heated quickly. In the context of sliding meshes, the
advantages of non-matching grids become very obvious. Working with
a conforming approach, a complicated re-meshing process is necessary
from one time step to the next, whereas we can use the original grid
for all time steps. The temperature along the line y = 0, z = 1 from
the side of copper and iron at time steps t = 10 and t = 100 is shown
in Figure 4. We can see that although in the beginning there is a
jump in the temperature across the interface, as time proceeds, the
jump decreases.
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Example 4: As a last numerical example, we consider the situa-
tion illustrated in the left picture of Figure 5. A cylinder Ωm of radius
0.25 cm and height 0.8 cm made of copper rotates at the rate of 10/2π
radians per second inside a cylinder ring Ωs of thickness 0.15 cm and
height 0.4 made of iron, where the material parameters are set as in
the last example. Zero Dirchlet boundary condition is applied on a
small patch of the outer boundary of Ωs, and the rest of the bound-
ary is thermally isolated. As in our third example, we compute the
solution by using the implicit Euler scheme using zero initial solution.
In the two right pictures of Figure 5, heat distributions at the times
t = 0.01 and t = 2 are visualized, respectively.
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Fig. 3. Decomposition of the domain and initial triangulation (left), and two
snapshots of the heat distribution at times t = 1 and t = 2 (right), Example 3
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2. I. Babuška and M. Zlámal. Nonconforming elements in the finite element
method with penalty. SIAM J. Numer. Anal., 10:863–875, 1973.

3. C. Bernardi, C. Canuto, and Y. Maday. Generalized inf-sup conditions for
Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer.

Anal., 25(6):1237–1271, December 1988.
4. S. Bertoluzza. Substructuring preconditioners for the three fields domain

decomposition method. Math. of Comp., 73(246):659–689, 2003.
5. D. Braess. Finite Elements. Theory, fast solver, and applications in solid

mechanics. Cambridge Univ. Press, Second Edition, 2001.
6. F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer–

Verlag, New York, 1991.
7. P. Jr. Ciarlet, J. Huang, and J. Zou. Some observations on generalized saddle-

point problems. SIAM J. Matrix Anal. Appl., 25(1):224–236, 2003.
8. P. Clément. Approximation by finite element functions using local regular-

ization. RAIRO Anal. Numér., 9:77–84, 1975.
9. B. Flemisch, J.M. Melenk, and B.I. Wohlmuth. Mortar methods with curved

interfaces. Applied Numerical Mathematics, 54(3-4):339–361, 2005.
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