
Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
Contents lists available at ScienceDirect

Comput. Methods Appl. Mech. Engrg.

journal homepage: www.elsevier .com/locate /cma
Conservative interpolation between volume meshes by local Galerkin projection

P.E. Farrell a,b,⇑, J.R. Maddison c

a Applied Modelling and Computation Group, Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
b Institute of Shock Physics, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
c Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
a r t i c l e i n f o

Article history:
Received 10 November 2009
Received in revised form 22 May 2010
Accepted 26 July 2010
Available online 21 August 2010

Keywords:
Interpolation
Conservation
Supermesh
Discontinuous Galerkin
Galerkin projection
0045-7825/$ - see front matter � 2010 Elsevier B.V. A
doi:10.1016/j.cma.2010.07.015

⇑ Corresponding author at: Applied Modelling and
ment of Earth Science and Engineering, Royal Schoo
London, London SW7 2AZ, UK.

E-mail address: patrick.farrell06@imperial.ac.uk (P
URL: http://amcg.ese.ic.ac.uk.
a b s t r a c t

The problem of interpolating between discrete fields arises frequently in computational physics. The
obvious approach, consistent interpolation, has several drawbacks such as suboptimality, non-conserva-
tion, and unsuitability for use with discontinuous discretisations. An alternative, Galerkin projection,
remedies these deficiencies; however, its implementation has proven very challenging. This paper pre-
sents an algorithm for the local implementation of Galerkin projection of discrete fields between meshes.
This algorithm extends naturally to three dimensions and is very efficient.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Interpolation between discrete fields arises frequently in com-
putational physics. For example, the use of adaptive remeshing
[35,33] frequently necessitates the interpolation of fields between
meshes. Interpolation problems also arise in areas such as model
coupling, model initialisation and visualisation.

This paper discusses the efficient local implementation of Galer-
kin projection of discrete fields between meshes. Firstly, we moti-
vate the use of Galerkin projection by considering the more usual
approach, consistent interpolation.

Consistent interpolation is the interpolation derived from the
solution values of the donor mesh. Let T D be the donor mesh with
nodes ND, and let T T be the target mesh with nodes NT . For each
node nT 2NT , a containing element KD is identified in the donor
mesh T D, and the solution qD is evaluated at the physical location
of the node nT. Such an element KD may be identified by an advanc-
ing front algorithm [28] or by an R-tree spatial indexing algorithm
[21].

Consistent interpolation suffers from several serious drawbacks.
Firstly, the interpolation is not conservative; the integral of the
output field qT will not in general be the same as the integral of
the input field qD. For some applications, conservation is a non-
ll rights reserved.

Computation Group, Depart-
l of Mines, Imperial College

.E. Farrell).
negotiable requirement. Secondly, the minima and maxima of
the field will in general be eroded during consistent interpolation
[10]. Thirdly, consistent interpolation is not suitable for discontin-
uous fields qD which are not pointwise well-defined. Such fields
arise in discontinuous Galerkin discretisations, which are becom-
ing increasingly popular. While this may be circumvented by the
application of a Clément-type pseudo-interpolation operator
[6,4], the output would be restricted to the continuous subspace
of the target function space.

Galerkin projection enjoys several key advantages over consis-
tent interpolation. Firstly, it is the optimally accurate projection
for the L2 norm; the Galerkin projection is that function which
minimises the L2 norm of the interpolation error. From this, conser-
vation follows naturally. Furthermore, it is well-defined for discon-
tinuous fields. The properties of the Galerkin projection are well-
known; however, its general implementation has proven challeng-
ing. This paper discusses the first efficient local implementation in
two and three dimensions via the construction of an intermediate
mesh, known as the supermesh.

George and Borouchaki [18] discuss the necessity of solution
interpolation after adaptive remeshing, and propose the use of
the Galerkin projection from mesh to mesh by means of mesh
intersection. Although they comment that in their experience this
provides a satisfactory algorithm for solution transfer, they give no
examples. The reader is referred to a technical report by R. Ouac-
htaoui to be published in 1997 for further discussion; it appears,
however, that this technical report was never published. Geuzaine
et al. [19] also discuss the Galerkin projection between two-dimen-
sional meshes; however, rather than integrating over the

http://dx.doi.org/10.1016/j.cma.2010.07.015
mailto:patrick.farrell06@imperial.ac.uk
http://amcg.ese.ic.ac.uk
http://dx.doi.org/10.1016/j.cma.2010.07.015
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma

90 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
supermesh, the integrals appear to be computed over the target
mesh. This is less accurate than assembling over the supermesh,
and therefore should be referred to as an approximate Galerkin
projection. A similar approach is taken by Parent et al. [34].

El Hraiech et al. [13] describe the desirability of the Galerkin
projection for structural analysis, but comment that the construc-
tion of the supermesh was not yet feasible. Therefore, the integral
is performed over a subdivision of the target mesh, with the hope
being that computing the inner products of the basis functions on
the refined target mesh is sufficiently accurate to assemble a useful
Galerkin system. However, the basis functions of the donor mesh
are (in general) discontinuous piecewise polynomials over any gi-
ven element of the target mesh, which are very difficult to inte-
grate by numerical quadrature schemes.

Farhat et al. [14] discuss a conservative load transfer algorithm
for fluid–structure interactions. This was followed by the work of
Heinstein and Laursen [23] and Jiao and Heath [25], who developed
the natural extension to this algorithm, which is to assemble the
mixed mass matrix over the supermesh. The supermesh is con-
structed by projecting the points of one surface onto their associate
on the other and intersecting the resulting meshes. Both of these
implementations only deal with two-dimensional surface meshes.

Farrell et al. [16] was the first to present the application of
supermeshing to adaptive remeshing, and the first to describe a
bounded variant of the Galerkin projection for piecewise linear
fields. A technical report from INRIA has also been published on
the application of supermeshing to two-dimensional simulations
[1]. The projection algorithm described is not the optimally-accu-
rate Galerkin projection and is specific to piecewise linear fields;
however, it is conservative and bounded.

This paper presents a novel, local method for assembling the
Galerkin projection system. Following from this, it presents the
first implementation of Galerkin projection between three-dimen-
sional meshes. The efficiency of the approach is demonstrated and
shown to be sufficiently fast for practical applications.

2. Galerkin projection

Consider interpolation of a field q between a donor mesh T D

with ND basis functions /ðiÞD , and a target mesh T T with NT basis
functions /ðiÞT . Let qT be the optimal interpolant in the L2 norm
[18,24]:

kqD � qTk2 ¼min
q2VT
kqD � qk2; ð1Þ

where VT ¼ span /ðiÞT

n o
for i 2 f1; . . . ;NTg.

The L2 norm of qD � q is minimised if the derivative of kqD � qk2

with respect to the coefficients of q is zero. Expanding the defini-
tion of the L2 norm,

@

@qðiÞ

Z
X
ðqD � qÞ2 dV ¼ 0; 8i 2 f1; . . . ;NTg ð2Þ

)
Z

X

@

@qðiÞ
ðqD � qÞ2 dV ¼ 0; 8i 2 f1; . . . ;NTg: ð3Þ

Expanding q in terms of the basis functions, q ¼
PNT

i¼1 qðiÞ/ðiÞT

)
Z

X
2/ðiÞT ðqD � qÞdV ¼ 0; 8i 2 f1; . . . ;NTg: ð4Þ

Since this value of q minimises kqD � qk2, q = qT and hence
Z

X
qD/ðkÞT dV ¼

Z
X

qT/
ðkÞ
T dV ; 8k 2 f1; . . . ;NTg: ð5Þ

This interpolation is referred to as Galerkin projection because it is
optimal in the L2 norm.
Conservation of the Galerkin projection follows naturally from
this weak equality:Z

X
qD dV ¼

Z
X

qT dV ; ð6Þ

if the constant function 1 is contained in the span of
/ðiÞT for i 2 f1; . . . ;NTg.

Expanding qD and qT in terms of the basis functions,
qD ¼

PND
i¼1 qðiÞD /ðiÞD and qT ¼

PNT
i¼1 qðiÞT /ðiÞT , yields

Z
X

XND

i¼1

qðiÞD /ðiÞD /ðkÞT dV ¼
Z

X

XNT

j¼1

qðjÞT /ðjÞT /ðkÞT dV : ð7Þ

This gives rise to the matrix equation

MT qT ¼ MTDqD; ð8Þ

where

ðMTÞij ¼
Z

X
/ðiÞT /ðjÞT dV ; i; j 2 f1; . . . ;NTg ð9Þ

and

ðMTDÞij ¼
Z

X
/ðiÞT /ðjÞD dV ; i 2 f1; . . . ;NTg; j 2 f1; . . . ;NDg: ð10Þ

MTD represents a mixed mass matrix between meshes T D and
T T . Assuming the mixed mass matrix may be assembled, Eq. (8)
may then be solved using a standard iterative solver to compute qT.

Dirichlet boundary conditions can be imposed upon this projec-
tion in the strong sense via removal of the basis functions associ-
ated with boundary condition nodes. However, this does not in
general result in a conservative projection.

3. Supermeshes

The desirable properties of the above projection have been
known for some time. However, its implementation has proven
challenging. To assemble the right-hand-side of Eq. (8), it is nec-
essary to integrate the products of the basis functions of T D and
T T . Over each element of T T , the basis functions of T D are possi-
bly discontinuous piecewise polynomials. Therefore, if the prod-
ucts of the basis functions are evaluated at each of the
quadrature points of T T , the integrals will not in general be exact,
as quadrature schemes are exact for a specified polynomial order,
not piecewise polynomials. This error in the assembly of MTD

causes the loss of conservation and accuracy properties, which
is highly undesirable. An adaptive quadrature scheme for the
assembly of MTD is considered later in Section 3.2 and found to
be impractical.

Over each element of the target mesh, the donor basis functions
are possibly discontinuous piecewise polynomials. However, over
each element of the donor mesh, the donor basis functions are sim-
ply polynomials. Therefore, over the intersection of a target ele-
ment and donor element, both sets of basis functions are
polynomials and therefore so is their product. This is the key obser-
vation that makes possible the assembly of MTD. Therefore, we de-
fine a supermesh as a mesh of the intersections of the target and
donor elements, illustrated for simple quadrilateral meshes in
Fig. 1 [16].

3.1. Local supermeshing

Previously, in [16], a global approach to supermesh construction
was proposed; this exploited a relationship between supermesh
construction and the constrained Delaunay triangulation to form
the supermesh in its entirety. In this paper, an alternative approach
called local supermeshing is proposed. Here, the supermesh is

Fig. 1. (a) and (b) Two quadrilateral meshes. (c) A triangular supermesh of (a)
and (b), coloured to show the elements of (a). (d) The same supermesh of (a)
and (b), coloured to show the elements of (b). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100 91
formed by meshing each intersection in turn. This approach is
significantly more efficient and scalable in memory usage. The
algorithm also naturally extends to three dimensions, unlike the
approach proposed in [16]. The newly proposed method is partic-
ularly suited to interpolation between spaces of discontinuous
functions, as both the assembly and solve can be performed en-
tirely locally on a given element of T T by exploiting the block-diag-
onal structure of the mass matrix.

We summarise the algorithm as follows:

1. Identify the intersecting pairs of elements.
2. For each element K 2 T T :

(a) Assemble the contribution to the mass matrix MT.
(b) For each intersecting element KD 2 T D:

i. Form T K
S , the mesh of the region of intersection.

ii. Assemble the contribution to the mass matrix MTD by
integrating the basis functions of K and KD over T K

S .
iii. Apply this to qD to form the contribution to the right-

hand-side of Eq. (8).
Fig. 2. Scaling properties of the advancing front intersection finding algorithm
tested in a 3D cubic shell domain [15]. The number of intersection predicates
performed is linear in jT Dj þ k.
(c) If T T is discontinuous, perform the local solve of Eq. (8).
3. If T T is continuous, perform the global solve of Eq. (8).

This procedure therefore uses local intersection-by-intersection
integration to assemble the right-hand-side of Eq. (8).

The minimally diffusive bounded conservative interpolation
scheme of Farrell et al. [16] requires only this right-hand-side, to-
gether with the lumped and consistent target mesh mass matrices,
and hence this bounding method can be applied using a local
supermeshing approach. For discontinuous T T the block-diagonal
structure of the mass matrix can again be exploited, and the
bounding procedure is an element-wise local operation that can
be performed as a further step immediately following the local
solve, without requiring assembly of the full global system. Further
details of the conservative bounding algorithm can be found in
[16].
3.1.1. Intersection identification
To form a supermesh intersection-by-intersection, it is first nec-

essary to identify the intersecting pairs of elements of T D and T T .
The existence of a suitable geometric intersection predicate is as-
sumed (for more details, see [31]).

The naïve brute-force approach performs OðjT DjjT T jÞ intersec-
tion tests, which is clearly undesirable. The element pairs may be
first filtered by an R-tree algorithm, which only considers pairs
with intersecting bounding boxes for intersection testing [21,29].
The construction of the R-tree takes OðjT Dj log jT DjÞ time, and the
query for each element of T T takes on average Oðlog jT DjÞ time,
for a total time of OððjT Dj þ jT T jÞ log jT DjÞ. This figure ignores the
actual bounding box intersection tests performed ascending and
descending the tree, which will render it sensitive to the number
of intersections between the meshes. Neither of these algorithms
exploits the mesh-based structure of T D and T T . By exploiting
the fact that the elements are not merely sets of polytopes but that
they form meshes of known connectivity, it is possible to develop a
novel algorithm based upon advancing fronts for intersection iden-
tification in connected domains. This algorithm is summarised as
follows:

1. Choose an element a1 in T D, and find an element b1 in T T inter-
secting a1 (the seed) by a brute force method

2. While there are unprocessed elements in T D:
(a) Find the elements Ii in T T intersecting ai by:

i. Ii {bi}
ii. F N(b), where N(bi) are the neighbouring elements of

bi in T T

iii. While jFj– 0:
A. Remove a neighbour n from F
B. If r \ n – ;: Ii I [{n}, F F [N(n)
(b) Choose a new unprocessed element ai+1 in T D neighbouring

a processed element ak.

(c) Find a new seed bi+1 by searching through Ik.

This algorithm is illustrated in Fig. 3. The algorithm performs
OðjT Dj þ kÞ intersection tests, where k is the number of intersecting
elements between T D and T T . If an initial seed is supplied to the
algorithm, this reduces to O(k). A complete formal proof of the lin-
ear scaling of this algorithm is given in [15].

For practical reasons, a bounding box intersection predicate was
used in the implementation of this algorithm. This reports false

Fig. 3. Illustration of element intersection reporting via an advancing front method. The target mesh T T is shown in black, and a donor element a in T D is shown in red. (a) A
seed element b in T T intersecting a is supplied (shaded). (b) The neighbours of the seed are tested for intersection with a (intersecting elements shown in darker shading). (c)–
(e) The untested neighbours of intersecting elements in T T are successively tested, until no new intersections are found. (f) The resulting set of intersecting elements I
(shaded). Seeds for the element intersection search for the neighbours of a (not shown) can be determined through a search over I. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The Sutherland–Hodgman clipping algorithm [41]. The subject polygon is initialised to the ‘W’ and the clipping polygon is the pentagon. Each edge of the clipping
polygon discards the subject vertices outside it, possibly creating new vertices for any intersecting edges. Figure credit: Wikipedia (public domain).

92 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
positive intersections which are discarded at the intersection stage,
described in the following section.

In order to demonstrate that the algorithm applies to higher
dimensions and multiply connected domains, the algorithm was
applied to a domain consisting of a cube of unit size, with a cubic
region of half-unit size removed from its centre to form a cubic
‘‘shell”. Unstructured meshes of varying node counts were gener-
ated by the addition of randomly distributed points throughout
the shell, followed by constrained Delaunay tetrahedralisation
using the three-dimensional mesh generator Tetgen [40].

Pairs of meshes were generated for input shell nodes counts of
2n, n 2 {8, . . .,15}. For each pair, the advancing front intersection
reporting algorithm was applied using a bounding box intersection
predicate. The resulting set of intersections was verified for com-
pleteness by comparison against alternative intersection reporting
algorithms. For shell node counts in the range 256–4096, the set of
intersections was verified against a brute force reporting algo-
rithm, and for shell node counts of 8192 and above was verified
against an R-tree spatial indexing algorithm [21]. The number of
bounding box intersections k was computed by summing the num-
ber of intersections for each element in R. The scaling properties
derived from this test are shown in Fig. 2. The scaling is observed
to be linear in T D þ k as expected.

3.1.2. Intersection construction
Once the intersecting elements in T D are identified for a given

KT 2 T T , these intersections must be meshed so that the quadra-
ture of the products of the basis functions may be performed.

Various intersection construction algorithms are available,
depending on the specifics of the elements used. For general con-
vex polytopes, algorithms are available in two dimensions [39]
and three dimensions [5]. One of the simplest is the Sutherland–
Hodgman clipping algorithm [41].

The Sutherland–Hodgman algorithm is illustrated in Fig. 4. The
subject polygon is initialised to be one of the input polygons, and
the other is designated the clipping polygon. Each edge of the clip-
ping polygon is considered in turn. The edge, when extended,
forms a line. An orientation test is performed for each vertex of
the subject polygon to determine whether it is on the positive or
negative side of the line, or collinear. If its orientation is positive
or collinear, it is retained, while if it is negative, it is discarded.
Furthermore, if one vertex of an edge in the subject polygon is

Fig. 5. An example of intersection construction via repeated clipping of simplex meshes. (a) Two triangles to be intersected. (b)–(d) The black triangle is successively clipped
using each edge of the red triangle. In each clip the triangles from the previous stage are individually subdivided to form a new triangle mesh. Hence the intersection
procedure is composed of a number intersections of triangles with half-spaces. (e) The resulting mesh of the intersection. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100 93
retained while the other vertex is discarded, then that edge must
intersect the clipping line, so the point of intersection between
the subject edge and the clipping line is computed and inserted
into the output vertices. The list of output vertices then forms
the subject polygon to be compared to the next edge of the clipping
polygon. In this manner, vertices of the subject polygon which are
external to the clipping polygon are systematically removed.

A similar approach is taken in three dimensions. Each face of the
clipping polyhedron is considered in turn. For each vertex of the
subject polyhedron, an orientation test is performed to decide
whether the vertex should be discarded or retained. Again, if an
edge has one vertex discarded and one vertex retained, then a
new vertex is formed at the intersection of the edge and the clip-
ping plane. The new vertices produced are then connected with
edges to form a new face of the subject polyhedron. This procedure
is continued until all the faces of the clipping polyhedron have dis-
carded those parts of the subject polyhedron outside the
intersection.

A disadvantage of the Sutherland–Hodgman approach is that
the algorithm only returns the vertices of the polytope of the inter-
section. In order to assemble the integrals of the mixed mass ma-
trix, this polytope must be meshed. If the two input elements are
convex, the intersection polytope is also convex, and thus the Del-
aunay triangulation of the vertices of the polytope is a mesh of the
intersection.

An alternative approach, adopted in this work, naturally con-
structs the mesh of the polytope during the intersection procedure.
This algorithm follows that of Eberly [11]. The list of output poly-
topes is initialised to be (a simplicial decomposition of) one of the
input polytopes, and the other is designated the clipping polytope.
Again, each edge of the clipping polytope is considered in turn.
Each polytope in the output list is clipped against the edge; the
clipping procedure returns a list of simplices that are to replace
the considered polytope. In this manner, at every step of the inter-
section procedure, the intersection is represented as a list of sim-
plices. Therefore, the output of the procedure consists of a list of
simplices which constitute a mesh of the intersection. By design,
the clipping procedure need only consider the intersection of a
simplex with a half-space; this can be divided into a handful of
possible cases and the solution for each devised on paper. This ap-
proach eliminates the need for costly post-processing of the result-
ing intersection polytope. An illustration of this intersection
procedure is shown in Fig. 5.

3.2. Adaptive quadrature approach

Clearly, supermeshing is not the only way to compute the inner
products of the basis functions of the target and donor meshes. An
alternative is to evaluate the basis functions of the donor mesh at
the quadrature points of the target mesh and compute the integrals
using numerical quadrature. In this vein, an experiment was per-
formed to test the practicality of computing the integrals in this
manner. A very similar approach was advocated in [13]; there,
the authors subdivide the elements of the target mesh into several
sub-elements to compute a more accurate approximation of the
integrals.

The adaptive quadrature package CUBPACK [7] was chosen as
the numerical quadrature scheme, as this appeared to offer imple-
mentations of the most recent research in numerical quadrature.
The example used was a single projection between two two-
dimensional P2DG meshes of 200 triangular elements. The adaptive
quadrature algorithm was used to compute the inner products of
the basis functions of the two meshes. The target relative error
was set to 1% of the integral and the maximum number of inte-
grand evaluations for each element in the target mesh was set to
105.

It was found that the integral computation performed for each
element reached the maximum number of integrand evaluations,
105; the target relative error of 1% was never reached. As such,
the system of equations was inaccurately assembled, resulting in
conservation errors on the order of 10�4, or 0.02%. By contrast,
the integral error arising from local supermeshing was on the order
of 10�16, equivalent to double precision roundoff errors. The inter-
polant constructed with supermeshing took less than a second,
while the adaptive quadrature approach took over 15 min. The
adaptive quadrature approach was therefore over 103 times slower
than projection by supermeshing, for a poorer result. The experi-
ment was not attempted on other examples due to the prohibitive
computational cost.

It is to be emphasised that the outcome of this experiment does
not reflect on the quality of the algorithms developed in CUBPACK.
Over each element, the integral to be computed is a discontinuous

94 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
piecewise polynomial; it is merely the case that supermeshing is a
vastly more efficient method for computing these particularly dif-
ficult integrals to within an acceptable error, even for this simple
case. However, it would appear that the method of El Hraiech
et al. [13] is not practical for such integrals.

Seen in this light, local supermeshing may be interpreted as a
very specific quadrature scheme for the inner products of basis
functions associated with meshes.

3.3. The size of the supermesh

The size of the supermesh may be estimated as follows. The
intersection of each intersecting pair of elements from the target
and donor meshes must be representable as the union of super-
mesh elements; each intersection must in turn be triangulated to
form a mesh over which quadrature may be performed. The num-
ber of intersections k is bounded by the cases where every element
in T D intersects with exactly one element in T T , and where every
element in T D intersects with every element in T T :

maxðjT Dj; jT T jÞ 6 k 6 jT DkT T j: ð11Þ

In two dimensions, if the elements of the input meshes are convex
polygons of n vertices, then the intersection is a convex polygon of
at most 2n vertices [31]. A convex polygon of 2n vertices may be
minimally triangulated into 2n � 2 triangles. In three dimensions,
the problem is significantly harder. Given two tetrahedra, the inter-
section has at most 8 faces [37, Theorem 7.2]. A 3-polytope with 8
faces can have at most 12 vertices [38, p. 499]. Computing the size
of the minimal triangulation of a convex polyhedron is NP-complete
[2]. However, the size of the minimal triangulation of a polyhedron

with n vertices is bounded above by n
2

� �
� 2nþ 3[12], where

n
2

� �
¼ n!

2!ðn�2Þ!. Therefore, the minimal number of elements of the

supermesh in the worst case is bounded above by CdjT DjjT T j, with
C2 = 4 and C3 = 45. For most practical pairs of meshes, this bound
is very pessimistic.

3.3.1. Error computation
An elegant feature of supermesh-based interpolation is that the

error between the donor function and its interpolant is exactly
computable (ignoring roundoff).

The supermesh provides a function superspace of the function
spaces associated with the input meshes, because the basis func-
Fig. 6. Convergence results for the L2 error of f1 as a function of mesh sizing h for (a) line
Since f1 is cubic, the error for higher-order basis functions is on the order of numerical
tions of the input meshes are exactly representable upon it [15].
This implies that the projection operator obtained by consistent
interpolation,

PSP : VP ! VS; P 2 fT;Dg ð12Þ

is the identity operation, i.e. PSP(q) = q. By closure, the difference
between two functions in VS is also an element of VS, and therefore
the projection error may be computed as

g ¼ PSDðqDÞ �PSTðqTÞ ¼ qD � qT : ð13Þ

The evaluation of PSP is trivial: since the parenthood mapping
from each element in T K

S is already stored to facilitate the con-
struction of MTD, no searching need be performed; only the evalu-
ation of the parent basis functions is required.

The computation of g is exact, ignoring roundoff error in the
evaluation of the projection operator PSP. Needless to say, this is
a very attractive property.

As g is available as a function, any desired norm may be taken to
quantify the error. Since the Galerkin projection is optimal in the L2

norm, the L2 norm is a sensible choice. If the projection were mod-
ified so that it were optimal in the H1 norm, as in [24], then the H1

norm should be chosen.
In practice, this error computation is more useful for discontin-

uous fields, as qT is computable element-by-element and therefore
so is g. The error computation can still be applied for continuous
fields, but either the supermesh must be stored or recomputed,
as qT requires a global mass matrix solve and so the entire super-
mesh must be assembled before it is computable.

3.3.2. Numerical order of convergence
A numerical experiment was performed to investigate the ob-

served order of convergence of the Galerkin projection. A given
scalar field f is evaluated on the donor and target meshes. Although
the donor and target meshes are topologically unrelated, they
share the same characteristic mesh size h. The Galerkin projection
from the donor mesh to the target mesh is computed. The error is
then computed as described in Section 3.3.1. This process is re-
peated with pairs of meshes of different sizes. The meshes were
generated with Gmsh [20].

Three functions were used:

f1ðx; yÞ ¼ 5y3 þ x2 þ 2yþ 3; ð14Þ
f2ðx; yÞ ¼ exp x2 þ 2y; ð15Þ
f3ðx; yÞ ¼ sin xþ cos y: ð16Þ
ar basis functions and (b) quadratic basis functions. The error is O(hp+1), as expected.
zero.

Fig. 7. Convergence results for the L2 error of f2 as a function of mesh sizing h for (a) linear basis functions and (b) quadratic basis functions. The error is O(hp+1), as expected.

Fig. 8. Convergence results for the L2 error of f3 as a function of mesh sizing h for (a) linear basis functions and (b) quadratic basis functions. The error is O(hp+1), as expected.

P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100 95
Convergence results for functions f1–f3 with finite element ba-
sis function degree p = 1,2 are shown in Figs. 6–8. The O(hp+1) ex-
pected order of convergence is observed in the numerical results.

4. Examples

4.1. Profiling results

An experiment was conducted to investigate the scaling of the
proposed local supermeshing scheme with problem size. For a gi-
ven size of problem, two different unstructured meshes were gen-
erated used the Gmsh mesh generator [20], and a P1DG field
interpolated between them via Galerkin projection 10 times. The
mesh edge lengths in the target mesh were, in each case, 10% smal-
ler than those in the donor mesh. An example of these meshes is
shown in Fig. 9. The time taken for this problem size was computed
as the total projection CPU time (measured by the mpi_wtime MPI
routine) divided by the number of projections. Therefore, the re-
ported timings include the cost of the intersection finder, con-
structing the supermesh, assembling the Galerkin system and
solving it.

The experiment was conducted in serial on a two-processor
quad-core Intel X5355 2.66 GHz machine with 16 Gb of RAM. The
implementation of the algorithm was compiled with version 10.1
of the Intel compiler suite and used the Hoard memory allocator
[3].

The results are shown in Fig. 10. As can be seen, the time taken
by the algorithm is linear in the size of the input meshes. In two
dimensions, the algorithm takes approximately 0.13 ms of CPU
time per element in the mesh, or 15 ls per bounding box element
intersection reported by the intersection finder; in three dimen-
sions, 0.66 ms of CPU time per element, or 10 ls per reported
element intersection. Despite the inherent complexity of superme-
shing in three dimensions, the procedure is faster per reported
intersection in three dimensions than in two; this is because signif-
icant development effort was invested in optimising the three-
dimensional intersector using OProfile [27]. For the largest test
with tetrahedral elements, with 819,758 elements in the donor
mesh and 1,161,175 elements in the target mesh (136,917 and
192,515 degrees of freedom, respectively), the Galerkin projection
took 665 s, which is sufficiently fast for practical use. Note that in
the context of adaptive remeshing, the cost could be reduced dra-
matically by supplying the projection algorithm with information
about unchanged elements from the adaptive remeshing algo-
rithm. If only 10% of the elements of the mesh change, then it is
unnecessary to supermesh or assemble the mixed mass matrix
over the other 90%, and thus the cost of Galerkin projection would
be reduced by a factor of approximately 10.

Fig. 9. The lowest resolution two-dimensional meshes used in the profiling analysis of Galerkin projection. Left: Donor mesh. Right: Target mesh.

Fig. 10. Profiling results for the experiment described in Section 4.1 in two (blue
circles) and three (red triangles) dimensions. The number of elements plotted is the
mean of the number of elements in the donor and target meshes. The time taken by
the algorithm is linear in the size of the inputs. In two dimensions, the algorithm
takes approximately 0.13 ms of CPU time per element in the mesh; in three
dimensions, 0.66 ms of CPU time per element. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

96 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
4.2. Two-dimensional lock exchange

With the development of Galerkin projection, combinations of
techniques that were previously infeasible become not just possi-
ble but useful.

To demonstrate this, a two-dimensional lock exchange simula-
tion was conducted in the domain X = [0,0.8] � [0,0.1]. The lock
exchange problem consists of two fluids of different density that
are initially separated by a gate or ‘lock’. The gate is removed at
t = 0 and the buoyancy force drives two gravity currents that prop-
agate in opposite directions, with the denser fluid flowing under
the lighter fluid.
Fig. 11. Initial condition for temperature for the two-dimensional loc
The equations solved were the incompressible Navier–Stokes
equations subject to the Boussinesq approximation for velocity
and pressure, and the advection–diffusion equation for tempera-
ture. The equation set was closed with the addition of a linear
equation of state. A no-slip boundary condition was enforced at
the bottom boundary and no-normal flow was enforced on all
other boundaries. The kinematic viscosity coefficient m was set to
10�6, to give a Reynolds number of 790 by the definition of Özgök-
men et al. [32]. The initial condition for temperature (Fig. 11) was
set to

Tðx; y; t ¼ 0Þ ¼
�1=2; if x < 0:4;
1=2; otherwise:

�
ð17Þ

The velocity and pressure fields were discretised with the P1DG–P2
finite element discretisation of Cotter et al. [9]. This element pair
promises to be excellent for geophysical applications, as it satisfies
the Ladyzhenskaya–Babuška–Brezzi stability condition and excel-
lently represents geostrophic balance [8]. The advection–diffusion
equation is discretised using a control volume scheme with the
Sweby limiter [42,44]. Crank–Nicolson time-stepping was used
with a timestep Dt of 0.025. The simulation was terminated after
24 units of simulation time. The mesh was adapted every 5 time-
steps with the algorithm of Vasilevskii and Lipnikov [43]. A metric
used to control the L1 norm of the interpolation error associated
with temperature was computed [33,36]:

M ¼ jHj
�
; ð18Þ

where H is the Hessian of the temperature field and � is a configu-
rable adaptivity tolerance. The adaptivity tolerance was set to
0.025. A minimum edge length of 5 � 10�4 and a maximum edge
length of 0.5 were enforced on the metric.

This simulation requires Galerkin projection for two reasons.
Firstly, consistent interpolation is undefined for the discontinuous
velocity field, so if one wishes to combine adaptive remeshing with
a discontinuous discretisation then an alternative to consistent
interpolation is necessary. Here, Galerkin projection is used for
velocity. Secondly, the discretisation of the advection–diffusion
equation preserves the integral of temperature to machine
k exchange problem. The bounds on temperature are [�0.5,0.5].

Fig. 12. Simulation results for the lock exchange at times 4, 8, 12, 16, 20, 24 time units. The bounds for temperature are [�0.5, 0.5]. Note the mesh adapting to resolve the
temperature interface. The combination of adaptive remeshing and discontinuous Galerkin methods would be impossible with consistent interpolation.

P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100 97
precision and the bounds approximately; therefore, it is highly
desirable to preserve these properties through the interpolation
step. Therefore, the bounded Galerkin projection of Farrell et al.
[16] is employed for temperature.

Simulation results are displayed in Fig. 12. The simulation
spends 0.2% of runtime identifying intersecting elements using
the algorithm of Section 3.1.1 and 6.9% of runtime in the assembly
and solve of the Galerkin projection. Of the time spent performing
the Galerkin projection, 59% of runtime was spent intersecting tri-
angles, 0.2% performing the local solves for the projection of the
discontinuous velocity, 3% performing the global solves for the pro-
jection of the continuous pressure and temperature, and 12%
applying the diffusive bounding algorithm to the temperature field.
Other projection costs are attributed to the time spent interpolat-
ing basis functions onto the intersections, and the time spent per-
Fig. 13. Integral of the temperature field for the two-dimensional lock exchange
simulation.
forming local assembly. The adaptive remeshing algorithm ensures
that the mesh resolution is appropriately placed to resolve the
temperature interface. The velocity of the front is in good agree-
ment with the benchmark data of Härtel et al. [22]. As can be seen
in Fig. 13, both the discretisation and the interpolation step are
conservative. Galerkin projection supplies a key component in ren-
dering possible the combination of discontinuous discretisations
and adaptive remeshing.

4.3. Three-dimensional water collapse

Simulations of multimaterial flows are numerically challenging.
The interfaces of the material volume fractions recording the mate-
rials are sharp and anisotropic, and this must be reflected in the
mesh upon which these flows are discretised. Furthermore, the dis-
cretisation must be conservative and bounded; otherwise non-
physical phenomena such as mass exchange may occur.

Adaptive remeshing was applied to an unsteady multimaterial
simulation of a water column collapsing in air under gravity. The
equations solved were the incompressible Navier–Stokes equation
and the advection equation for the evolution of the material vol-
ume fraction.

The simulation was conducted in the domain X = [�0.5,0.5] �
[�0.5,2] � [�0.5,0.5]. A material volume fraction representing
water is initialised to be 1 in the region [�0.5,�0.25] �
[�0.5,0] � [�0.5,0] and zero elsewhere. No-normal flow was im-
posed on velocity on all boundaries except for the top. At the
top, a homogeneous Neumann boundary condition was imposed
on velocity, and a homogeneous Dirichlet boundary condition
was imposed on pressure. The P0DG–P1CV element pair was used
for the velocity–pressure discretisation; the HyperC control vol-
ume face value algorithm was used for the advection equation
[26]. The motivation for this element pair and the discretisation
is described in Wilson [44]. Crank–Nicolson time-stepping was
used, with an initial timestep of Dt = 2 � 10�4. The timestep was
adapted through the simulation to maintain a CFL number of 2.5.
The simulation was terminated at t = 0.9. The material volume

Fig. 14. Isosurface of the material volume fraction field at time t = 0.43 for the
water collapse simulation.

Fig. 15. The material volume fraction and mesh at times t = 0, 0.09, 0.17, 0.25, 0.33,

98 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
fraction representing water was chosen as the field to guide adap-
tivity. A three-dimensional extension of the metric formation algo-
rithm of Formaggia and Perotto [17]; Micheletti and Perotto [30]
was used to control the H1-seminorm of the interpolation error;
the target error was chosen to be s = 25. A minimum edge length
of 0.001 was enforced to constrain the adaptive algorithm. The
mesh was adapted every 10 timesteps. To spread resolution ahead
of the dynamics, the metric tensor formed was advected forward
for one adaptivity period and superimposed with itself. This has
the effect of extending resolution to where the interface will be
over the course of the adaptivity period. Since the velocity field
was discontinuous, Galerkin projection was used to interpolate it
from each previous mesh to the corresponding adapted mesh. As
conservation and boundedness of the material volume fraction
are crucial, the bounded Galerkin projection of Farrell et al. [16]
was employed for this field.

Simulation results are displayed in Figs. 14 and 15. The simula-
tion spent 0.4% of runtime identifying intersecting elements using
the algorithm of Farrell [15], and spent 12.3% of runtime in the
Galerkin projections. Again, the adaptive remeshing ensures that
the mesh resolution is focussed on the material interface.
0.39 for the water collapse simulation, viewing the domain surface at y = �0.5.

Fig. 16. (a) Integral and (b) bounds of the material volume fraction field for the water column collapse in three dimensions. Note that both the discretisation and interpolation
are conservative and bounded.

P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100 99
Maintaining this accuracy in the material interface would be pro-
hibitively expensive on any fixed mesh. As can be seen in Fig. 16,
both the discretisation and the interpolation step preserve the
integral and bounds of the material volume fraction. This combina-
tion of a discontinuous discretisation, conservative and bounded
advection, and adaptive remeshing would have been impossible
with consistent interpolation.

5. Conclusions

A robust, efficient supermesh construction algorithm has been
proposed. With the development of local supermeshing, the algo-
rithm can be applied in three dimensions, and can scale to larger
problem sizes than those feasible using a global supermeshing ap-
proach. The computational cost of this method has been shown to
have a linear scaling with problem size. Two numerical examples
have been shown, a lock exchange simulation and a water collapse
simulation, which demonstrate the practicality of this approach in
two and three dimensions.

The method can be applied to both continuous and discontinu-
ous fields. This enables mesh adaptive simulations using novel dis-
cretisations to be conducted at practical computational cost. In
particular, the LBB stable P1DG–P2 element pair, which has shown
excellent geostrophic balance properties in geophysical simula-
tions [8], can be used in mesh adaptive simulations using this
interpolation method.

A extension of this method is to impose a Lagrange constraint
upon the interpolation. For example, discrete incompressibility of
a velocity field u can be imposed via:

M0
T uT ¼ M0

TDuD þ CW; CT uT ¼ 0; ð19Þ

where M0
T ¼ diagðMTÞ; M0

TD ¼ diagðMTDÞ and W a scalar potential. C
is a discrete gradient matrix: C = (C1, . . ., Cd)T with
ðCkÞij ¼

R
X @/ðiÞT =@xk

� �
fðjÞ dV for i 2 f1; . . . ;NTg; j 2 f1; . . . ;NWg

and k 2 {1, . . .,d}, where d is the dimension of the domain and NW

is the number of basis functions f(j) for W. This formulation is equiv-
alent to the Galerkin projection of the Helmholtz decomposition of
the donor field uD, assembled directly on the target mesh. A topic
for future research is the implementation and testing of such con-
strained projections.

The availability of this algorithm makes the exploitation of
Galerkin projection between unrelated unstructured meshes prac-
tical. Hence this approach enables the accurate, conservative, L2

optimal interpolation of fields, in two and three dimensions for
both continuous and discontinuous function spaces. This has appli-
cations in dynamically mesh adaptive numerical modelling, model
initialisation and model coupling.

Acknowledgements

The authors wish to acknowledge support from the UK Natural
Environment Research Council (Grants NE/C52101X/1, NE/
C51829X/1 and NE/H527032/1) and support from the Imperial Col-
lege High Performance Computing Service and the Oxford Super-
computing Centre. P.E. Farrell would like to thank AWE for their
funding of his research through the Institute of Shock Physics.

References

[1] F. Alauzet, M. Mehrenberger, P1-conservative solution interpolation on
unstructured triangular meshes, Tech. Rep. RR-6804, INRIA Rocquencourt,
Rocquencourt, Le Chesnay, France, 2009, <http://hal.inria.fr/inria-00354509/
en/>.

[2] A. Below, J.A. De Loera, J. Richter-Gebert, The complexity of finding small
triangulations of convex 3-polytopes, J. Algorithms 50 (2) (2004) 134–167.

[3] E.D. Berger, K.S. McKinley, R.D. Blumofe, P.R. Wilson, Hoard: a scalable memory
allocator for multithreaded applications, ACM SIGPLAN Notices 35 (11) (2000)
117–128.

[4] C. Carstensen, Clément Interpolation and Its Role in Adaptive Finite Element
Error Control, Operator Theory: Advances and Applications, vol. 168,
Birkhäuser Basel, 2006, pp. 27–43 (Chapter 2).

[5] B. Chazelle, An optimal algorithm for intersecting three-dimensional convex
polyhedra, SIAM J. Comput. 21 (4) (1992) 671–696.

[6] P. Clément, Approximation by finite element functions using local
regularization, RAIRO Anal. Numér. 9 (1975) 77–84.

[7] R. Cools, A. Haegemans, Algorithm 824: CUBPACK: a package for automatic
cubature; framework description, ACM Trans. Math. Software 29 (3) (2003)
287–296.

[8] C.J. Cotter, D.A. Ham, C.C. Pain, A mixed discontinuous/continuous finite
element pair for shallow-water ocean modelling, Ocean Model. 26 (1–2)
(2009) 86–90.

[9] C.J. Cotter, D.A. Ham, C.C. Pain, S. Reich, LBB stability of a mixed Galerkin finite
element pair for fluid flow simulations, J. Comput. Phys. 228 (2) (2009) 336–
348.

[10] D.R. Davies, J.H. Davies, O. Hassan, K. Morgan, P. Nithiarasu, Investigations into
the applicability of adaptive finite element methods to two-dimensional
infinite Prandtl number thermal and thermochemical convection, Geochem.
Geophys. Geosyst. 8 (5) (2007).

[11] D.H. Eberly, 3D Game Engine Design: A Practical Approach to Real-time
Computer Graphics, Morgan Kaufmann, 2001.

[12] H. Edelsbrunner, F.P. Preparata, D.B. West, Tetrahedrizing point sets in three
dimensions, J. Symb. Comput. 10 (3/4) (1990) 335–348.

[13] A. El Hraiech, H. Borouchaki, P. Villon, L. Moreau, Mechanical field
interpolation, in: L.M. Smith, F. Pourboghrat, J. Cao, T.B. Stoughton, J.-W.
Yoon, M.F. Shi, C.-T. Wang, L. Zhang (Eds.), Proceedings of the Sixth
International Conference and Workshop on Numerical Simulation of 3D
Sheet Metal Forming Process, AIP, Detroit, Michigan, 2005, pp. 201–208.

http://hal.inria.fr/inria-00354509/en/
http://hal.inria.fr/inria-00354509/en/

100 P.E. Farrell, J.R. Maddison / Comput. Methods Appl. Mech. Engrg. 200 (2011) 89–100
[14] C. Farhat, M. Lesoinne, P.L. Tallec, Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces:
momentum and energy conservation, optimal discretization and application to
aeroelasticity, Comput. Methods Appl. Mech. Engrg. 157 (1–2) (1998) 95–114.

[15] P.E. Farrell, Galerkin projection of discrete fields via supermesh construction,
Ph.D. Thesis, Imperial College London, 2009.

[16] P.E. Farrell, M.D. Piggott, C.C. Pain, G.J. Gorman, C.R.G. Wilson, Conservative
interpolation between unstructured meshes via supermesh construction,
Comput. Methods Appl. Mech. Engrg. 198 (33–36) (2009) 2632–2642.

[17] L. Formaggia, S. Perotto, Anisotropic error estimates for elliptic problems,
Numer. Math. 94 (1) (2003) 67–92.

[18] P.L. George, H. Borouchaki, Delaunay Triangulation and Meshing: Application
to Finite Elements, Hermes, 1998.

[19] C. Geuzaine, B. Meys, F. Henrotte, P. Dular, W. Legros, A Galerkin projection
method for mixed finite elements, IEEE Trans. Magn. 35 (3) (1999) 1438–1441.

[20] C. Geuzaine, J.-F. Remacle, Gmsh: a 3-D finite element mesh generator with
built-in pre- and post-processing facilities, Int. J. Numer. Methods Engrg. 79
(11) (2009) 1309–1331.

[21] A. Guttman, R-trees: a dynamic index structure for spatial searching, ACM
SIGMOD Record 14 (2) (1984) 47–57.

[22] C. Härtel, E. Meiburg, F. Necker, Analysis and direct numerical simulation of
the flow at a gravity-current head. Part I. Flow topology and front speed for slip
and no-slip boundaries, J. Fluid Mech. 418 (1) (2000) 189–212.

[23] M.W. Heinstein, T.A. Laursen, A three dimensional surface-to-surface
projection algorithm for non-coincident domains, Commun. Numer. Methods
Engrg. 19 (6) (2003) 421–432.

[24] X. Jiao, M.T. Heath, Common-refinement-based data transfer between non-
matching meshes in multiphysics simulations, Int. J. Numer. Methods Engrg.
61 (2004) 2402–2427.

[25] X. Jiao, M.T. Heath, Overlaying surface meshes, Part I: algorithms, Int. J.
Comput. Geom. Appl. 14 (6) (2004) 379–402.

[26] B.P. Leonard, The ultimate conservative difference scheme applied to unsteady
one-dimensional advection, Comput. Methods Appl. Mech. Engrg. 88 (1)
(1991) 17–74.

[27] J. Levon, P. Elie, Oprofile: a system profiler for Linux, 2009, <http://
oprofile.sourceforge.net>.

[28] R. Löhner, Robust, vectorized search algorithms for interpolation on
unstructured grids, J. Comput. Phys. 118 (2) (1995) 380–387.

[29] Y. Manolopoulos, A. Nanopoulos, A. Papadopoulos, Y. Theodoridis, R-trees:
Theory and Applications, Springer, 2005.
[30] S. Micheletti, S. Perotto, Reliability and efficiency of an anisotropic
Zienkiewicz–Zhu error estimator, Comput. Methods Appl. Mech. Engrg. 195
(9–12) (2006) 799–835.

[31] D.M. Mount, Geometric intersection, in: J.E. Goodman, J. O’Rourke (Eds.),
Handbook of Discrete and Computational Geometry, CRC Press, Inc., Boca
Raton, FL, USA, 1997, pp. 615–630.

[32] T.M. Özgökmen, T. Iliescu, P.F. Fischer, A. Srinivasan, J. Duan, Large eddy
simulation of stratified mixing in two-dimensional dam-break problem in a
rectangular enclosed domain, Ocean Model. 16 (1–2) (2007) 106–140.

[33] C.C. Pain, A.P. Umpleby, C.R.E. de Oliveira, A.J.H. Goddard, Tetrahedral mesh
optimisation and adaptivity for steady-state and transient finite element
calculations, Comput. Methods Appl. Mech. Engrg. 190 (29–30) (2001) 3771–
3796.

[34] G. Parent, P. Dular, J.P. Ducreux, F. Piriou, Using a Galerkin projection method
for coupled problems, IEEE Trans. Magn. 44 (6) (2008) 830–833.

[35] J. Peraire, M. Vahdati, K. Morgan, O. Zienkiewicz, Adaptive remeshing for
compressible flow computations, J. Comput. Phys. 72 (2) (1987) 449–466.

[36] M.D. Piggott, C.C. Pain, G.J. Gorman, P.W. Power, A.J.H. Goddard, h, r, and hr
adaptivity with applications in numerical ocean modelling, Ocean Model. 10
(1–2) (2005) 95–113.

[37] F.P. Preparata, M.I. Shamos, Computational Geometry: An Introduction, second
ed., Springer, 1985.

[38] R. Seidel, Convex hull computations, in: J.E. Goodman, J. O’Rourke (Eds.),
Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC,
2004, pp. 495–512.

[39] M.I. Shamos, D. Hoey, Geometric intersection problems, in: Proceedings of the
17th Annual Symposium on Foundations of Computer Science, 1976, pp. 208–
215.

[40] H. Si, K. Gärtner, Meshing piecewise linear complexes by constrained
Delaunay tetrahedralizations, in: B.W. Hanks (Ed.), Proceedings of the 14th
International Meshing Roundtable, Springer, San Diego, California, 2005, pp.
147–163.

[41] I.E. Sutherland, G.W. Hodgman, Reentrant polygon clipping, Commun. ACM 17
(1) (1974) 32–42.

[42] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic
conservation laws, SIAM J. Numer. Anal. 21 (5) (1984) 995–1011.

[43] Y. Vasilevskii, K. Lipnikov, An adaptive algorithm for quasioptimal mesh
generation, Comput. Math. Math. Phys. 39 (9) (1999) 1468–1486.

[44] C.R. Wilson, Modelling multiple-material flows on adaptive unstructured
meshes, Ph.D. Thesis, Imperial College London, London, UK, 2009.

http://oprofile.sourceforge.net
http://oprofile.sourceforge.net

	Conservative interpolation between volume meshes by local Galerkin projection
	Introduction
	Galerkin projection
	Supermeshes
	Local supermeshing
	Intersection identification
	Intersection construction

	Adaptive quadrature approach
	The size of the supermesh
	Error computation
	Numerical order of convergence

	Examples
	Profiling results
	Two-dimensional lock exchange
	Three-dimensional water collapse

	Conclusions
	Acknowledgements
	References

