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Summary. We describe our parallel 3-D surface and volume mesh modification
strategy for large-scale simulation of physical systems with dynamically changing do-
main boundaries. Key components include an accurate, robust, and efficient surface
propagation scheme, frequent mesh smoothing without topology changes, infrequent
remeshing at regular intervals or when triggered by declining mesh quality, a novel
hybrid geometric partitioner, accurate and conservative solution transfer to the new
mesh, and a high degree of automation. We apply these techniques to simulations
of internal gas flows in firing solid propellant rocket motors, as various geometri-
cal features in the initially complex propellant configuration change dramatically
due to burn-back. Smoothing and remeshing ensure that mesh quality remains high
throughout these simulations without dominating the run time.

1 Introduction

Many physical systems involve material interfaces with dynamically changing
geometries. Examples include the gas in the vicinity of parachutes, airfoils,
helicopter blades, turbine engines, and burning propellants in rockets. Several
approaches to discretizing the gas (fluid) and solid (structural) domains in
problems of this type may be adopted (embedded boundary method, immersed
boundary method, Chimera overset structured grids, ghost fluid method, etc.),
but since an accurate representation of the behavior of the solution near the
interface is often vitally important to the evolution of the solution throughout
the entire fluid domain, body-fitted grids seem to be the most appropriate
choice. However, maintaining adequate mesh quality for a body-fitted grid as
the domain boundary deforms significantly with time can be a very challenging
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problem, particularly in large-scale 3-D parallel simulations. In this paper, we
describe our multi-tiered, dynamic, parallel mesh modification strategy and
demonstrate its effectiveness for two real-world rocket problems. It should
be noted that our meshing strategy is broadly applicable to many types of
problems with highly evolving domains.

In simulations of physical systems with deforming geometry, the location
of the material interface is often part of the solution (e.g., parachutes), rather
than a surface whose motion is prescribed as a boundary condition (e.g., a
rigid sphere moving through the air). While it may be possible to describe the
initial configuration of a parachute using a CAD model, once the chute begins
to deform due to its interaction with the air, the only available description of
its geometry is the deformed surface mesh of the chute. Surface propagation
driven by a discretized velocity field is in general a very challenging problem,
which we address using the Face-Offsetting Method.

Generating a new mesh at advanced simulation times requires the ability
to derive (locally) a smooth representation from the discrete surface mesh [1].
When a new mesh is needed, we perform surface and volume mesh generation
using a package from Simmetrix, Inc. Partitioning the new mesh for parallel
execution of the simulation may be accomplished using METIS or ParMETIS,
but especially for very large meshes, our recently developed and integrated
hybrid geometric partitioner provides superior performance and robustness.

Unfortunately, generating a new mesh and transferring the numerical solu-
tion from the old mesh to the new one is both time-consuming and introduces
interpolation errors. Therefore, in our simulations we delay remeshing by fre-
quently applying Mesquite from Sandia National Laboratories to smooth and
maintain mesh quality without changing mesh topology. Our parallel imple-
mentation applies a serial version of Mesquite in a concurrent manner. Inter-
polation of the solution is not necessary when the mesh is smoothed, allowing
us to smooth every few time steps without decreasing solution accuracy.

These remeshing, data transfer, partitioning, and smoothing capabilities
have all recently been integrated in the Rocstar rocket simulation package to
enable us to perform large-scale simulations of physical systems with highly
evolving domain boundaries without greatly increasing the wall clock time
(compared to simulations of problems with fixed domains). We present results
for two rockets with complex changing internal geometries. Experience with
these real-world applications has helped us find better criteria for determining
when to remesh.

Related work: A number of researchers have worked on mesh generation
for dynamically changing geometries. Here we mention several of the method-
ologies most closely related to our approach. Baker [2] proposed to perform
smoothing, coarsening, and refinement at each time step during the geomet-
ric evolution. The paper demonstrated effectiveness of the meshing technique
without a physics solver. Folwell et al. [3] showed that mesh smoothing can
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delay abort-time of a computational electromagnetic code TAU3P. Wan et
al. [4] successfully applied local mesh modification to metal forming simula-
tions and compared the results with remeshing. Cardoze et al. [5] used bezier-
based curved elements with refinement, coarsening, and edge smoothing for
dynamic blood flow simulation in two dimensions. Dheeravongkit and Shi-
mada [6] performed pre-analysis to adjust the input mesh for the anticipated
deformation. The method was demonstrated successfully for forging simula-
tions in two dimensions. Giraud-Moreau et al. [7] described a geometrical error
estimate for adaptive refinement and coarsening of triangular and quadrilat-
eral surface meshes. It was applied to a thin-sheet metal forming simulation
using ABAQUS. Compared to the previous works, we focus on large-scale par-
allel 3-D simulations with emphasis on software integration of various meshing
tools.

2 System Integration Overview

The Rocstar[8] simulation suite consists of a large number of dynamically
loaded software modules coupled together to solve fluid/structure interaction
problems including moving and reacting interfaces. Each module encapsulates
a physics solver or some service needed by the simulation. Figure 1 depicts the
Rocstar architecture. This parallel code uses MPI (or AMPI[9]) and typically
runs on hundreds to several thousand processors in a batch environment. All
module interactions, including the communication of data and function calls,
are mediated by a general integration interface. The integration framework is
designed to allow each module to retain its own data structures, representa-
tion, and parallelism.

Fig. 1. Rocstar simulation component overview.

Our multi-tiered approach to mesh modification involves the steps shown
in Figure 2. First, the surface is propagated according to the solution of the
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physical system and the surface mesh is smoothed to maintain quality. Next,
we smooth the volume mesh to maintain its quality, and update the solution
field variables. Eventually, the change in geometry becomes so severe that the
smoothing operations cannot maintain acceptable mesh quality, and global
remeshing is triggered. More details on surface propagation, smoothing, and
remeshing are presented in subsequent sections of this paper.

1. Propagate surface according to physical solution
2. Smooth surface mesh
3. Smooth volume mesh
4. Physics solvers update solution
5. If mesh and solution are acceptable then continue (Step 1)
6. If mesh or solution quality is too low, trigger remeshing (Step 7)
7. Global remesh of geometry at last good checkpoint
8. Transfer solution from old mesh to new and generate new checkpoint
9. Restart simulation from new checkpoint and continue (Step 1)

Fig. 2. Integrated surface propagation, solution update, and meshing procedures.

When triggered, the remeshing module reads the simulation’s last restart
disk files (checkpoint) and writes a full set of simulation restart files. This
allows our remeshing software to access the mesh and solution data of any
domain in an identical manner regardless of the source, and also ensures that
we remesh from a known good geometry and solution. Thus, the result of
a remeshing phase (trigger, remesh, transfer solution, generate restart files)
looks like a normal full simulation restart. This is done in such a way that the
batch job does not terminate.

We have explored several strategies for deciding when to remesh. Our first
simple strategy is geometry-based triggering. In this strategy, we examine the
mesh after each time step and make a decision based on some mesh quality
metric such as minimum dihedral angle or aspect ratio of an element. This
strategy is easily implemented since it does not rely on any solution data.

In our experience, geometric triggering is insufficient because the mesh
may become distorted in such a way that its quality is not bad per se, but
the physics solver can no longer get an accurate solution in some part of the
mesh. A trivial way to deal with this is to trigger remeshing at fixed intervals
short enough so that the mesh is not expected to deform significantly. This
strategy is easily implemented and works well for maintaining a good quality
mesh, but may be unnecessarily expensive in terms of wall clock time.

We also allow our physics solvers to initiate remeshing based on their
own internal decision-making process, whatever that may be. One of our fluid
solvers triggers remeshing based on a threshold for the minimum internal
timestep. This solver ensures that its explicit time step does not exceed the
Courant limit (the shortest time for a signal to cross any cell). This strategy
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is slightly better than geometry-based triggering, since the local fluid solution
is given some weight in the decision-making process.

We believe that the best possible remeshing triggering strategy would be
one based on an analysis of the solution accuracy in each domain. This would
require internal solver error estimators which are currently under develop-
ment. We plan to add this capability in the near future.

3 Surface Propagation

Dynamic moving surfaces arise in many scientific and engineering applica-
tions, such as crystal growth, dendritic solidification, microchip fabrication,
multiphase flows, combustion and biomedical applications. Because singulari-
ties and topological changes may develop during the evolution of the surface,
propagating it numerically poses daunting challenges in developing accurate,
efficient, and robust techniques.

To address the problem, we have developed a novel method for surface
propagation, called the face-offsetting method (FOM ) [10]. FOM propagates
an explicit surface mesh without requiring a volume mesh, but unlike tradi-
tional Lagrangian methods, FOM propagates the faces of the mesh and then
reconstructs the vertices from the faces by performing an eigenvalue analy-
sis locally at each vertex to resolve the normal motion (for obtaining surface
geometry) and tangential motion (for maintaining mesh quality) simultane-
ously. This new approach enables us to obtain accurate physical solutions for
both advective and wavefrontal types of motion, even at singularities, and to
ensure the integrity of the surface as it evolves.

The steps of the face-offsetting method are outlined in Figure 3. The first
step “offsets” each individual face by integrating the motion of its vertices or
quadrature points, and hence the method is named “face offsetting.” After
offsetting, the faces may no longer be connected to each other, and the second
step reconstructs each vertex to be the “intersection,” in a least squares sense,
of the offsets of its incident faces. The displacement di of the ith vertex is then
estimated as the vector from the vertex to the intersection, which essentially
propagates the vertex to the point that minimizes a weighted sum of the
squared distances to the offsets of its incident faces. This computation results
in a linear system Ad = b at each vertex, where A is a 3 × 3 matrix and d
and b are 3 vectors. Robustness of the computation is achieved through an
eigenvalue analysis of the matrix A.

We then update the tangential motion of the vertices to maintain good
mesh quality (step 4). More specifically, we restrict the motion to be within
the null space of the matrix A, as it tends to introduce minimal errors. Re-
distributing the vertices in this manner is referred to as null-space smoothing
and was proposed in [12]. To maintain a mesh that is free of self-intersections,
we next determine the maximum propagation time step αΔt that prevents
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1. Propagate each face by time-integration of motion at its vertices or quadrature
points

2. Reconstruct vertices to estimate displacement di at each vertex vi

3. For wavefrontal motion, correct vertex displacement di based on Huygens’
principle[11]

4. Compute tangential motion ti for each vertex vi to maintain mesh quality
5. Compute maximum time step αΔt that prevents mesh self-intersection for α ≤ 1

and move each vertex by α(di + ti)

Fig. 3. Outline of the face-offsetting method.

mesh folding for α ≤ 1, and then move each vertex vi to vi +α(di + ti) (step
5).

If the motion is wavefrontal, such as in burning or etching, the estimated
displacement from step 2 yields a poor approximation, and therefore an ad-
ditional step is needed to correct the vertex displacements. This is done by
adjusting the face offsets at expansions based on Huygens’ principle[11] (step
3), so that the solution erodes expanding features. The effectiveness of the
face offsetting method can be seen in Figures 10, 12, and 13.

4 Parallel Mesh Smoothing

We perform mesh optimization in Rocmop, a module which improves the
quality of unstructured volume meshes through nodal repositioning, a pro-
cess referred to as mesh smoothing. The purpose of smoothing is to delay
degradation of mesh quality (and therefore the need for remeshing) due to
the geometric evolution of the domain boundary as the simulation progresses.
Because our fluid and structural dynamics equation solvers are formulated on
moving meshes (i.e., Arbitrary Lagrangian-Eulerian [ALE] formulation), no
interpolation of the solution is required when the mesh is smoothed. Instead,
the equations of motion include the contribution to the change in the solution
due to mesh motion. This allows us to smooth the mesh as often as desired
without decreasing solution accuracy.

Nodes on the domain boundary move (at a nominal rate of about 1 cm/s in
solid propellant rockets) due to the physics of the problem. Our fluid dynamics
solver relies on Rocmop to move interior nodes, in particular those close to the
surface, in order to avoid rapid generation of highly skewed elements there.
Rocmop must be called at least every few time steps to maintain the same
mesh quality as a run with smoothing performed every fluid time step. The
main limitation appears to be stability of the numerical solution: if smoothing
is not called often enough, the smoother makes more drastic changes to the
nodal locations when it finally is invoked, which can cause the numerical
solution to blow up.
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An important feature of any module that may be called many times during
a simulation is efficiency. In an early implementation of Rocmop, we noticed
that more computational time was spent in mesh smoothing than in the fluid
solver. After careful performance tuning, if called once every 3 fluid steps,
Rocmop now uses around 30 percent of the total wall clock time. One lesson
learned was that the execution time to evaluate the mesh quality measure
(maximum dihedral angle) is significant compared to one time step of the
physics solver. We wanted to check at every call whether this measure was
below some specified threshold, and to perform additional smoothing if im-
provement was needed, but that turned out to be quite impractical. We now
normally avoid computing the quality measure altogether.

Rocmop calls Mesquite [13, 14, 15], a powerful sequential mesh-smoothing
package from Sandia National Laboratories. We apply Mesquite concurrently
to each mesh partition independently, and then use a simple averaging scheme
to realign the nodes shared by neighboring partitions. We were concerned that
this averaging would degrade mesh quality, and were computing mesh qual-
ity metrics at substantial computational cost to ensure that mesh quality
remained high. This turned out to cost far more than it was worth. We saw
little improvement when we repeated the process of smoothing the mesh parti-
tions independently and then averaging the coordinates of partition boundary
nodes.

Fig. 4. Three mesh partitions with their ghost cells.

Note that Mesquite does not move nodes on surface patches or parti-
tion boundaries. As mentioned in Section 3, the surface mesh is smoothed
frequently by our surface propagation module. Unlike most surface patches,
partition boundaries do not often have a very regular geometry, especially
when using a tetrahedral mesh. We have found that it is extremely impor-
tant to allow Mesquite to relocate nodes on partition boundaries freely, as if
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they were interior nodes. We accomplish this by passing to Mesquite the real
elements (local to a partition) plus the ghost cells (non-local elements) that
share at least one node with a real element on the partition. The ghost nodes
are used in the fluid solver’s parallel implementation to store local copies of
quantities needed from neighboring partitions. Figure 4 shows an example of
three mesh partitions with their ghost cells. Utilizing these expanded mesh
partitions, Mesquite can move the nodes on the partition boundary to their
optimal locations.

5 Remeshing and Solution Data Transfer

We have developed a suite of remeshing and solution transfer tools called Ro-
crem to carry out a complete on-line remeshing process to improve the surface
and volume quality of 3-D unstructured tetrahedral meshes. This approach is
utilized when other methods, such as smoothing and local mesh repair, fail
to improve mesh quality sufficiently for the continued use of the mesh (i.e. by
a physics solver). Rocrem performs two key tasks: the generation of a better
quality mesh and the transfer of solution data from the old mesh to the new
mesh.

5.1 Surface Remeshing

Because of the use of commercial off-the-shelf (COTS) software for the mesh
generation component of Rocrem, the first step is the serialization of the
partitioned mesh. The surface mesh, like the physical domain boundary that
it represents, is organized into patches, each having a particular boundary
condition (BC). Each surface mesh partition may include regions (“panes”)
from various patches. The panes on each partition are first “stitched” together
into a single surface mesh with patch information preserved by including it
with the data for each triangular element. These surface partitions are then
sent to the rank zero processor, and stitched together to form the serial surface
mesh.

This serial mesh is then imported to Simmetrix’s Simulation Modelling
Suite (SMS). The SMS constructs a discrete model from the surface mesh.
The patches and BCs are preserved by specifying each patch to Simmetrix as
a model face, and assigning each triangular element to the appropriate model
face.

At this point, mesh sizing prescribed by user-specified parameters is im-
posed, ranging from absolute sizing to fine control of the sizing relative to
the discrete model. A new surface mesh is then generated according to the
discrete model and these sizing parameters.

There are a few special situations that must be handled at the surface
remeshing stage that are of particular importance in simulations with evolving
mesh geometries. One is the disappearance of geometric features, and the other
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is the far more complicated disappearance of entire patches. The techniques for
addressing these situations are notable in that they expand the functionality
of our remeshing tools (beyond merely improving the quality of a mesh) into
the realm of deviating slightly from the discrete model to properly continue
the mesh evolution during a simulation. We describe each of these situations
below.

Disappearing Geometric Features: Geometric feature information is de-
termined by the SMS, and during surface remeshing those features are main-
tained by default. However, as the mesh evolves, certain features may become
smaller and might eventually disappear, while others will arise and expand.
As a feature disappears, its size will first become smaller than that of the
edge sizing desired in the discretization. This will cause the appearance of
poor quality elements, whose edges have a very high aspect ratio. These ele-
ments will invariably result in poor quality elements in the volume mesh. To
remove such features and thereby recover higher quality in both the surface
and volume meshes, it is necessary to deviate slightly from the discrete model
that was determined from the original surface mesh. This is done by carefully
selecting the parameters to the surface mesh modification function provided
by the SMS. In particular, the SMS is instructed to remove poor quality ele-
ments that fall below a specified aspect-ratio threshold. This approach allows
for the removal of a variety of features at the appropriate times during simu-
lations with evolving geometries, such as the star-shaped region in some solid
propellant rockets (see Section 7).

Disappearing Patches: A disappearing patch is a special case of a disap-
pearing geometric feature. It arises when a geometric feature is shrinking and
about to disappear, but the entire feature itself is a patch that was specified
to the SMS discrete model as being a model face. While disappearing features
on the same model face can be removed as described in the previous section,
a model face that has a width of a single layer of very thin, poor quality
elements cannot be removed without violating the model.

To handle this case, the mesh is examined to determine which patch is
disappearing, and then the patch is reassigned to a neighboring patch. This
allows for the removal of the thin elements using the same approach as in
the previous section. The neighboring patch effectively takes over the space
occupied by the reassigned patch.

In our rocket simulations, this situation typically arises when a burning
surface neighboring an inhibited (non-burning) surface propagates in such as
way as to eliminate the inhibited surface. When the inhibited surface is re-
duced to a thin ring and the solver cannot continue due to the poor element
quality in that area, the inhibited surface elements are reassigned to the en-
croaching burning surface. Figure 5 illustrates this situation.
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(a) 52.3s (b) 87.6s (c) 98.8s

Fig. 5. A geometric feature that is an entire patch in the RSRM joint-slot disappears
over time.

Our current implementation requires user intervention in determining to
which neighboring patch the disappearing patch should be reassigned. We are
in the process of developing a means to detect this situation and automatically
reassign the patch.

5.2 Volume Remeshing

Once the surface mesh is obtained, a volume mesh is generated. This typi-
cally results in a mesh with a coarser discretization deep in the interior. To
control the interior mesh sizing and its gradient from the surface to deep in
the interior, we set sizing parameters on the entire mesh and perform mesh
adaptation using the SMS. The resulting mesh is smoothed and optimized,
and the final product is then partitioned and ghost layers are added to it
by ParFUM to facilitate communication and smoothing. For partitioning, we
make use of either METIS- or ParMETIS-based[16, 17] partitioning provided
by ParFUM[18], or our novel geometric partitioner (see Section 6). The new
mesh is then ready for the solution transfer process.

5.3 Solution Data Transfer

We perform parallel solution data transfer using a conservative volume-
weighted averaging strategy. Conservative volume-data transfer has been pre-
viously investigated in the literature, for example [19]. Our strategy begins by
extruding the surface of the old mesh just enough to encapsulate the bound-
ary of the new mesh. Cells generated by extrusion are assigned solution values
from the cells whose faces were extruded to create them. Next, the new mesh
is superimposed on the old mesh, and we determine which elements of the
two meshes intersect. This is accomplished by using the parallel Charm++
Collision Detection library[20]. This library can be configured to determine
lists of potentially colliding elements quite efficiently, carrying the associated
element data to the new mesh in the process. These lists each contain entries
for both source (old mesh) and destination (new mesh) elements. Each pair of
source and destination elements is examined to determine their overlapping
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volume. The solution on the old element is then weighted by the percentage of
the new element’s volume that is overlapped, and this portion of the solution
is accumulated on the new element. Preliminary tests verify that the solu-
tion transfer scheme is conservative to machine precision, and the accuracy
is acceptable for this first order simulation. Further work will be devoted to
detailed error quantification.

5.4 Future Directions in Remeshing

Efforts to parallelize the bulk of the remeshing phase are on-going. Approaches
are selected based on how much the mesh quality has degraded. For exam-
ple, a mesh with high surface quality but low volume quality is improved by
remeshing the volume of each partition in parallel. This approach relies on the
use of the geometric partitioner discussed in Section 6 to create well-formed
partitions that the SMS can accept as valid meshes. This approach is complete
and full integration of the new partitioner is underway.

Another approach we are taking to relieve the remeshing bottleneck ad-
dresses the problem of poor surface mesh quality. There is no mechanism to
pass a mesh to the SMS in parallel and improve the surface. This phase will
proceed as it currently does in Rocrem: the mesh is serialized, the surface is
improved, and a new volume mesh is generated. However, one time-consuming
phase involves the adaptation of the new volume mesh to a desired sizing. We
intend to partition the mesh and perform this expensive step in parallel.

6 Parallel Hybrid Mesh Partitioner

As mesh-based simulations become larger and larger, the need for scalable,
parallel mesh partitioners increases. Generally, mesh partitioners fall into two
categories: topological and geometric. Each category has advantages and dis-
advantages relative to the other [21]. For instance, geometric partitioners can
create disjoint partitions on non-convex domains. On the other hand, topo-
logical partitioners can create partitions with many neighboring partitions.

We seek to combine the advantages of each by developing a hybrid parti-
tioner. The idea is to compute a coarse topological partitioning of an irregu-
lar mesh, segmenting large portions of the mesh that a geometric partitioner
would have trouble partitioning into simpler domains. This coarse partitioning
is then refined by a geometric partitioner.

At present, we have implemented in parallel a nested dissection geometric
partitioner [22]. It has proven scalable for meshes with tens of millions of cells
on tens of thousands of compute nodes.

A novel topological partitioner is under development. The partitioner finds
separators in the medial surface of the domain. The medial surface is computed
in parallel with only a simple partitioning (Figure 6). Once computed, the
medial surface is walked to find edges that bound large features. These features
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Fig. 6. Medial surface computed on 8 processors.

are broken off of the mesh and partitioned geometrically. Preliminary results
of the hybrid partitioner show regular partitions with a bounded number of
neighbors and no disjoint partitions (Figure 7).

Fig. 7. Hybrid partition example.

7 Results

In this section, we present Rocstar simulations of two different rockets whose
propellant is of significant geometrical complexity, a two-meter long test motor
called StarAft and the 30-meter long Space Shuttle Reusable Solid Rocket
Motor (RSRM).

Figure 8 shows the outer surface of the fluid domain in the StarAft rocket
at four different simulation times during the test firing. The colors indicate
the mesh partitions produced by METIS. The initial domain has a 6-pointed
star-shaped cross section that tapers to a cylindrical profile near the head
end (left hand side of Figure 8) and an inert nozzle at the aft end. As the
propellant burns back to the cylindrical case, the fluid domain expands to
fill the new fluid volume. When the propellant has burned completely, the
fluid volume is over four times larger than it was initially. The number of
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Fig. 8. Internal fluid domain of StarAft at (from top) 0.1, 3.4, 6.8, and 10.2 seconds.

tetrahedral elements increases from about 500K to as many as 1.7M. These
computations were performed on up to 96 CPUs on various platforms. We
used the Slow-timescale Acceleration technique [23] to speed up the burn-
back rate by a factor Z from 64 to 1000. This reduces the number of time
steps and mesh smoothings (performed every fluid time step) by a factor of Z,
and therefore reduces by Z the ratio of the wall clock time for these operations
compared to remeshing, whose invocation frequency and wall clock time are
not affected by the acceleration technique. For Z = 64, the error in the fluid
solution introduced by the acceleration is less than 2 percent; the percentages
of wall clock time usage are: fluid solver 36, smoothing 41, and remeshing 23.

Fig. 9. StarAft pressure history for two different remeshing criteria.
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Figure 9 shows the gas pressure at a particular location in the StarAft
rocket for two simulations that differ only in their criterion for remeshing.
The curve labeled “Periodic” (black) derives from a run in which remeshing
was applied at 0.1 s intervals. One can see that each remeshing introduces a
small (less than 0.3 percent amplitude) transient in the pressure history that
dies away in about 0.02 s.

In the simulation corresponding to the curve labeled “Triggered” (pink),
remeshing was triggered only when the time step computed by the fluid solver
fell below a threshold value, presumably indicating the presence of sliver el-
ements. Note the elevated pressures for times between 0.6 s and 1.3 s for
this run. These elevated values occur because numerical errors in the solution
increase as the mesh expands along with the fluid domain, reducing the spa-
tial resolution. Whenever a new mesh is generated, additional interior nodes
are inserted automatically to help preserve the initial local mesh spacing.
Thus, the more frequent remeshings which occur in the periodically remeshed
run better preserve both solution accuracy and mesh quality, although at a
somewhat higher computational cost. In practice, we have found that peri-
odic remeshing can also help prevent occasional simulation crashes due to
large nodal displacements induced by the mesh smoother while attempting to
improve a mesh of marginal quality.

Figure 10 shows the grid near the aft end of the StarAft rocket at four
different times. The colors again indicate the partitioning pattern. The image
sequence shows how the geometric features evolve. By 3.4 s, the concave star
grooves have become sharp ridges, and the convex star tips have become
several times wider. By 6.8 s, the annular surface at the aft end of the star
has vanished, and part of the convex star tips have reached the cylindrical
case. By 10.2 s, all features associated with the star have burned away.

When geometric features are about to change, nearby surface triangles
often become very small, and remeshing is more frequently triggered by the
fluid time step criterion. For this reason, our “periodically” remeshed runs
enforce remeshing at both regular intervals and the fluid time step threshold.

Figure 11 indicates both the mesh quality and the frequency of remeshing
in a run with only the fluid time step threshold (no periodic remeshing). At
0.1 s intervals, we computed the value of the maximum dihedral angle. The
black dots represent times at which remeshing occurred, and line segments
connecting the dots correspond to time intervals during which no remeshing
was triggered. Some remeshing periods are so short that only one data point
was used for that period. We can see that each remeshing yielded a mesh
with a maximum dihedral angle of about 155 degrees. The maximum dihedral
angle subsequently deteriorated to somewhere in the range of 170 to nearly
180 degrees before the next remesh was triggered. Note that frequency of
remeshing varied from several tenths of a second at early times, to very often
for times between about 6 to 8 seconds, and then several tenths of a second
again towards burn out. This observation agrees with the fact that geometric
features changed frequently between 6 s and 8 s, as mentioned above. Note
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Fig. 10. Mesh of StarAft near the aft end at 0.1, 3.4, 6.8, and 10.2 seconds.
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Fig. 11. Maximum dihedral angle of StarAft. Data points are connected together
for each interval between remeshing.
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Fig. 12. Burning (red) and non-burning surfaces in the RSRM at 0.1 s, 22 s, 50 s,
and 61 s.

that the remeshing interval was also very short near 4 s, when the star grooves
became sharp ridges.

Next, we simulated near-complete propellant burn-out in the RSRM on
up to 256 processors. Figure 12 illustrates the progression of propellant burn-
back. Shortly after ignition (leftmost image), burning propellant covers most
of the surface of the fluid domain, except for a hole for the igniter at the head
end (upper left), the nozzle (lower right) and annular rings in the three joint
slots where a coating inhibits burning. At 22 s, the star tips first reach the
rocket case, which is essentially cylindrical with an ellipsoidal dome at the
head end. At subsequent times, the star tips broaden and then merge. The
burning surface in the joint slots expand radially until they reach the case,
and then slide along the rocket axis. By 111 s, the propellant is entirely gone.

Figure 13 shows geometrical details and the surface mesh at four different
times. The color scale corresponds to the gas pressure. Shortly after ignition,
at 0.2 s, the pressure is still low, since the propellant has just begun to burn.
There are several triangles across the concave grooves in the star-shaped re-
gion, and the convex star tips are thin. By 7.1 s, the concave grooves are
just beginning to merge. The merging of features occurs over the course of
several remeshings. During each remeshing, all triangles below a certain size
are eliminated, but this process may remove only part of the corresponding
geometrical feature; the rest of the feature remains in the model until the re-
maining triangles become small enough to be eliminated during a subsequent
remeshing. By 15.1 s, the concave grooves have become ridges, and the wider
bumps at the bases of the star tips are about to merge. By 23.1 s, the bumps
have merged and the star tips are flattening where they have reached the case.

The mesh in this simulation had 1.7 M tetrahedra initially, and 4.1 M
by 23.1 s. Remeshing was invoked every 0.5 s, and also triggered whenever
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Fig. 13. Aft end of the star-shaped region in the RSRM. Simulation times are
(clockwise from upper left) 0.1 s, 7.1 s, 15.1 s, and 23.1 s.

the fluid time step dropped below 1 microsecond. There were roughly 50,000
fluid steps between remeshings. The Slow-timescale Acceleration factor Z was
64. Each entire remeshing procedure takes about 46 minutes and produces
a mesh with a maximum dihedral angle near 155 degrees. For a run that is
not accelerated (Z = 1), in which we smooth the mesh (approximately 3 M
elements) every 3 fluid time steps, the percentages of wall clock time usage
are: fluid solver 70, smoothing 27, and remeshing 3. Accelerating the run by
a large factor essentially eliminates the fluid and smoothing times (even if we
smooth every fluid step), and therefore serial remeshing limits the maximum
possible speedup (through Slow-timescale Acceleration) to a factor of about
33.

8 Conclusion and Discussion

The strategy for modifying body-fitted meshes described in this paper enables
our integrated simulation package to obtain accurate numerical solutions for
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many classes of physical problems with moving domain boundaries. For the
solid propellant rockets studied here, the nominal burn rate is quite slow
compared to the Courant limit on the explicit time step that can be used
in our unstructured-mesh fluid dynamics solver. As a result, even though we
perform some remeshing stages using a sequential commercial package, these
operations do not dominate the total simulation wall clock time. In contrast,
frequent application of a sequential mesh smoother in a parallel manner is
essential to minimizing the total computational cost of both smoothing and
remeshing.

For problems with more rapid domain boundary motions, including those
we produced by accelerating the burn-back times in our rockets, serial remesh-
ing can become a bottleneck. Parallelizing all stages of mesh generation is a
much more difficult problem than smoothing mesh partitions concurrently.
Although there are parallel versions of some meshing tools, including Sim-
metrix’s, we believe that a parallel remeshing strategy based on concurrent
application of serial packages has important advantages, including ease of in-
tegration of alternative serial meshing tools.

Our experience with large-scale simulations with highly evolving domains
suggests some future directions in meshing research. One research area is soft-
ware integration with physics solvers and among meshing packages. Although
many meshing packages can successfully solve the problems for which they
were designed, integrating diverse packages into a large simulation remains
difficult and time consuming. Various obstacles prevented us from using the
native parallel versions of Mesquite and Simmetrix (which did not exist when
we developed Rocstar in its present form). For example, Mesquite has an API
that conforms to the TSTT specification, but Simmetrix does not. Another
obstacle involves the discrete geometry of partitioned meshes. The mesh in a
large-scale simulation is already partitioned when remeshing is needed, and
the domain geometry can be defined only by a collection of surface patches
distributed among a large number of processors. The surface patches carry
additional attributes, such as boundary conditions, whose values must re-
main associated with the appropriate faces when the domain is remeshed and
repartitioned.

Additional research is needed to improve the efficiency of mesh smoothing,
which for evolving geometries can consume a significant fraction of the run
time, even when performed concurrently. Our simulations would benefit from
the use of a mesh quality measure that is both quick to evaluate and takes
into account the element size distribution of the existing mesh. The smoothed
mesh should be as similar as possible to the existing mesh to help prevent
sudden large motions of nodes that could cause solution instability in the
physics solvers. This constraint and the fact that the existing mesh is usually
of reasonably good quality might be used to improve the rate of convergence
to the optimal smoothed mesh configuration.
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