

Scalable Parallel Solution Coupling for Multi-Physics Reactor
Simulation

Timothy J. Tautges, Alvaro Caceres
Argonne National Laboratory, Argonne, IL 60439 USA

Abstract. Reactor simulation depends on the coupled solution of various physics types,
including neutronics, thermal/hydraulics, and structural mechanics. This paper describes the
formulation and implementation of a parallel solution coupling capability being developed for
reactor simulation. The coupling process consists of mesh and coupler initialization, point
location, field interpolation, and field normalization. This capability is tested on two example
problems; one of them is a reflector assembly from the ABTR. Performance of this coupler in
parallel is reasonable for the problem size chosen and the chosen range of processor counts.
The runtime is dominated by startup costs, which amortize over the entire coupled simulation.
Future efforts will include adding more sophisticated interpolation and normalization methods,
to accommodate different numerical solvers used in various physics modules and to obtain
better conservation properties for certain field types.

1. Introduction
Simulation applications are evolving toward more complexity in terms of both the physics modeled as
well as the length scales at which they are modeled. These “multi-physics” and “multi-scale” codes
share a common need to transfer solutions from one discretization to another. In many cases, a multi-
physics or -scale code does not originate at once, but is assembled from several, often stand-alone
codes. For these codes, solution transfer must consider the overall process, including not only the
mathematical details of mapping from one mesh to another, but also the efficient communication and
mapping between meshes whose distribution on the parallel machine may not have been chosen to
optimize solution transfer. In this paper, we discuss a modular approach to solution transfer, which
accommodates a variety of mesh types, mapping functions, and multi-physics solution frameworks.

The ITAPS project is developing common interfaces to mesh (iMesh), geometry (iGeom), and
other data, and services based on them [1]. The interfaces are designed to be datastructure-neutral,
and can be called directly from C, C++, and Fortran applications. IMesh defines a data model
consisting of entities (the finite element plus polygons and polyhedra), entity sets (arbitrary groupings
of entities and other sets), the interface instance or “root set”, and tags (data annotated on members of
any of the other data types). Services are available for mesh smoothing [2] and adaptive mesh
refinement [3], to name a few. The ITAPS interfaces are being used as the basis for the SHARP
reactor simulation project [4], which performs the coupled solution of thermal/hydraulics and
neutronics for fast reactor cores. Solution transfer plays a major role in this effort.

The solution mapping process consists of transferring a field from a source mesh to a target mesh,
where the source and target meshes are each used by a specific physics, are represented in iMesh, and
are distributed over a parallel machine. In this work we focus on solution transfer for overlapping 3D

domains. Motivated by a component-based approach to multi-physics code development, we make
the following assumptions when designing solution transfer capability:

1. Each physics is free to choose the mesh type and parallel distribution best for that physics,
without regard for its suitability for solution transfer.

2. Each physics type and mesh is distributed across a set of processors, defined by an MPI
communicator for each mesh

3. If multiple physics types are assigned to a given processor, the mesh for all physics on that
processor is stored in a single iMesh instance, and that instance communicates with all other
processors containing pieces of any of those meshes.

There has been a great deal of previous work on the topic of solution transfer (e.g. see Refs. [5-6]).
Many papers focus on the mathematical properties of mapping solutions, with various constraints
imposed which are specific to the physics being solved. Also, various mapping functions are used,
depending on the shape functions used to compute the field. Despite these variations, there are also
many similarities in the various approaches to parallel solution transfer. For example, most
approaches require locating one mesh in another, communicating fields between processors, and
normalizing results after interpolation (though the method actually used in that normalization may
vary). Hence, we approach the problem of solution transfer from a process point of view, where
distinct steps are implemented in a modular fashion. This allows substitution of one or more specific
steps, e.g. mapping function, while reusing other parts of the implementation.

2. Parallel Solution Transfer Algorithm

The parallel solution transfer process is broken down into several functions:

Initialization: We assume the mesh has been read onto the machine and is initialized (with parallel
interfaces) according to the assumptions above. Parallel details of the mesh (interface and partitioning
sets, communicator, etc.) are encapsulated in the iMesh instance. To facilitate point location on a
source mesh, a kdtree decomposition is computed for the local part of the source mesh on each
processor. In addition, the bounding box corner points for the root node of this tree on each processor
is sent to all processors holding target mesh. These box coordinates are used to narrow the search for
source elements containing each target point, which reduces parallel communication during this
process.

Point Location: Point location is the process of choosing points at which data will be coupled
(usually derived from a target mesh), and locating the processor(s), element(s), and parametric
coordinates in those element(s) that contain each target point. The source element(s) containing a
given point can be on the local or remote processor. The algorithm used in this phase is shown in
Figure 2.1. In this case, target points are derived from the target mesh, but need not be restricted to
vertices in that mesh. This algorithm reduces data communication by storing point location data on
the source mesh processor, and passing an index into that list to the target mesh processor requesting
the interpolation point. This incurs a small extra storage cost (one tuple of three integers per target
point) but reduces communication during the interpolation phase. All processors holding source and
target mesh participate in the scatter/gather communication. In theory this communication could be
optimized in cases where the target and source processor sets were disjoint (no processor held both
source and target mesh). However, it is unclear whether that would save much communication time,
or whether it would be worth the added complexity in the application.

Interpolation: During the execution of a physics component, field values are computed and stored on
various entities in the source mesh on each processor. This process may be repeated for iterations
working towards some steady state, or as part of a time advancement calculation. The field values on
this source mesh must be interpolated onto the target mesh. The algorithm used in the interpolation
stage is described in Figure 2. As described in the introduction, our approach is modular, allowing the
application to choose the type of shape function used for the interpolation. In our current
implementation, the shape functions are implemented in the iMesh/MOAB library. This is discussed
more later. The only requirement in this implementation is that the location of the target point within
the element be represented using three double precision numbers whose bounds are between -1 and 1.

Normalization: After interpolation, a field is assigned values at target points. If repeated
interpolations are done from one mesh to another and back again, the values of the field can “drift”
due to numerical roundoff error and other factors, depending on the shape function evaluations. In
some cases this drift can be disregarded, but in others it can add or remove energy in the physical
system. To avoid this, the coupler also provides for normalizing some integrated quantity over the
target mesh to match the same integrated quantity on the source mesh. Currently, we only implement

the global integrated quantity, according to the integration function associated with the shape function
used in the interpolation. This is discussed more later.

1. Choose field to interpolate, f
2. Scatter/gather Tu4(j, i, k, f) using j as the destination processor; j is replaced with the

source processor i
3. Tu4(j, i, k, f)[l], interpolate f(e, pqr), e, pqr Tu3(e, pqr)[k] → f Tu4(j, i, k, f)[l]
4. Scatter/gather Tu4(j, i, k, f) using j as the destination processor; j is replaced with the

source processor i
5. Tu4(j, i, k, f)[l], f → f[i]
6. Tu5(i, k)[l], interpolate f(e, pqr), e, pqr Tu3(e, pqr)[k] → f[i]

Figure 0: Algorithm for interpolation phase of solution coupling.

 1. Choose target points ti

 2. ti :
(a) root box Bj containing ti :

 i. If j != p add tuple Tu1(j, i, xyz), where xyz are the coordinates of ti

 ii. Else add tuple Tu_tmp(i)
 3. Scatter/gather Tu1(j, i, xyz), using j as destination processor; j gets replaced on destination

processor with source processor
 4. tu1 Tu1

(a) Traverse the source mesh kdtree to find the leaf node(s) whose boxes contain ti

(b) element e in each leaf node, find the natural coordinates pqr in e
(c) If pqr [0, 1], add tuple Tu2(e, pqr)[k], and tuple Tu3(j, i, k)[l]
(d) Else add tuple Tu3(j, i, -1)[l]

 5. Scatter/gather Tu3(j, i, k), using j as destination processor; j gets replaced on destination
processor with source processor

 6. tu3 Tu3(j, i, k), if k != -1, add tuple Tu4(j, i, k, f)[l], where f is a double-precision
parameter used in the interpolation phase

Repeat steps 4a-c for all tuples in Tu_tmp; in step 4c, put contained points in Tu5(i,k) instead of
Tu3

Figure 0: Algorithm for point location phase of solution coupling.

3. Coupling Results

Error! Reference source not found. shows the ABTR reflector assembly model, with different
colors used to indicate different geometric volumes. The source mesh consists of 12k hexahedral

elements, while the target mesh contains 130k tetrahedral elements. For these examples, an analytic
function is defined at hexahedral mesh vertices, and this field is mapped to the target mesh vertices

based on trilinear basis functions. The original fields and the coupled results are also shown in

Figure 1: Geometry and target mesh for the ABTR reflector (left); source field defined on hexahedral
mesh (middle); transferred field on target tetrahedral mesh (right).

. Note that this shows a “pseudocolor” plot, which interpolates the vertex values to show a
smoothly-varying field.

Figure 1: Geometry and target mesh for the ABTR reflector (left); source field defined on hexahedral
mesh (middle); transferred field on target tetrahedral mesh (right).

Run times for the various coupling steps are shown in Figure 2; normalization time was not
measured. The data shown is for coupling the same meshes on increasing numbers of processors. In
absolute terms, the initialization of the problem dominates the other phases in this problem, with the
interpolation phase accounting for a maximum of 0.06%, for the 32-processor run. For problems
where the mesh is not deforming, the interpolation stage is the only one repeated for each coupling
step, therefore these times will be acceptable. Parallel efficiency shows mixed results, with poor
scaling for mesh import and interpolation, and moderate to good scaling for instantiation and point
location. Although interpolation time appears to scale quite poorly; absolute times for this portion of
the example were below 0.001 seconds, which is close to the clock tick size. Timing results should be
generated on larger problems to better assess scaling of the this step.

Figure 2: Execution time for coupling (left), parallel efficiency (right).

Several other conclusions can be drawn from this data. First, the mesh import time is not being
reduced as quickly as other times with increasing processor counts. The capability to read only those
portions of mesh assigned to a given processor is already under development.

Second, the point location algorithm described in Figure 0 includes a sequential search over the
bounding box extents for each processor for each point being interpolated. This step will grow in cost
as the number of processors increases. We intend to develop a tree-based search of those boxes as
well, bringing scaling closer to O(log(p)) than to O(p) for this part of point location. Since the tree
structure is already implemented, the development of this capability will be very straightforward.

Finally, we note that normalization of the solution over all processors is currently not done, since a
vertex-based field is being mapped in these examples. However, that step should not require a great
deal of execution time, since most of the element-based calculations are local to each processor,
followed by a reduction of results over all processors

4. Summary & Future Work
This report describes the formulation and implementation of a parallel solution coupling capability.
The coupling process consists of mesh and coupler initialization, point location, interpolation, and
normalization. Coupling results show good qualitative agreement with the field being coupled.
Scaling varies for the process steps; the interpolation step scales poorly, but takes a negligible amount
of absolute time compared to other steps. In the case of static mesh, this step is the only one repeated
for each iteration or time step. Larger examples must be run to investigate whether this step scales
well.

The implementation of solution transfer in MOAB will be extended in various ways. More
interpolation methods will be added as needed, based on the physics components being coupled.
Higher-order basis functions are needed immediately, and have already been implemented.
Normalization over specific subsets in the mesh is also needed, to focus on specific sub-regions in the
problem. This extension will be straightforward based on material sets defined in the source and
target meshes. Finally, tuning the interpolation and normalization methods to achieve various
conservation properties will also be studied. This is a research topic, which will be of great interest to
the scientific community as coupled multi-physics simulations become more common.

Acknowledgments

This work was supported by the US Department of Energy’s Scientific Discovery through Advanced
Computing program under Contract DE-AC02-06CH11357. Argonne National Laboratory (ANL) is
managed by UChicago Argonne LLC under Contract DE-AC02-06CH11357.

References
[1] K.K. Chand, L.F. Diachin, X. Li, C. Ollivier-Gooch, E.S. Seol, M.S. Shephard, T. Tautges, and H.

Trease, “Toward interoperable mesh, geometry and field components for PDE simulation
development,” Engineering with Computers, vol. 24, 2008, pp. 165-182.

[2] Patrick M. Knupp, “Applications of mesh smoothing: copy, morph, and sweep on unstructured
quadrilateral meshes,” International Journal for Numerical Methods in Engineering, vol. 45,
1999, pp. 37-45.

[3] M.S. Shephard, K.E. Jansen, O. Sahni, and L.A. Diachin, “Parallel adaptive simulations on
unstructured meshes,” Journal of Physics: Conference Series, vol. 78, month> </month>
<month>08</month>/<year>2007</year. , p. 012053.

[4] A. Siegel, T. Tautges, A. Caceres, D. Kaushik, P. Fischer, G. Palmiotti, M. Smith, and J. Ragusa,
“Software design of SHARP,” Joint International Topical Meeting on Mathematics and
Computations and Supercomputing in Nuclear Applications, M and C + SNA 2007, La Grange
Park, IL 60526, United States: American Nuclear Society, 2007, p. 13.

[5] J. Grandy, “Conservative Remapping and Region Overlays by Intersecting Arbitrary Polyhedra,”
Journal of Computational Physics, vol. 148, 1999, pp. 433-466.

[6] L. Margolin, “Second-order sign-preserving conservative interpolation (remapping) on general
grids,” Journal of Computational Physics, vol. 184, 2003, pp. 266-298.

