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Abstract. Reactor simulation depends on the coupled solution of various physics types, 
including neutronics, thermal/hydraulics, and structural mechanics.  This paper describes the 
formulation and implementation of a parallel solution coupling capability being developed for 
reactor simulation.  The coupling process consists of mesh and coupler initialization, point 
location, field interpolation, and field normalization. This capability is tested on two example 
problems; one of them is a reflector assembly from the ABTR.  Performance of this coupler in 
parallel is reasonable for the problem size chosen and the chosen range of processor counts.  
The runtime is dominated by startup costs, which amortize over the entire coupled simulation.  
Future efforts will include adding more sophisticated interpolation and normalization methods, 
to accommodate different numerical solvers used in various physics modules and to obtain 
better conservation properties for certain field types. 

1.  Introduction 
Simulation applications are evolving toward more complexity in terms of both the physics modeled as 
well as the length scales at which they are modeled.  These “multi-physics” and “multi-scale” codes 
share a common need to transfer solutions from one discretization to another. In many cases, a multi-
physics or -scale code does not originate at once, but is assembled from several, often stand-alone 
codes.  For these codes, solution transfer must consider the overall process, including not only the 
mathematical details of mapping from one mesh to another, but also the efficient communication and 
mapping between meshes whose distribution on the parallel machine may not have been chosen to 
optimize solution transfer.  In this paper, we discuss a modular approach to solution transfer, which 
accommodates a variety of mesh types, mapping functions, and multi-physics solution frameworks. 

The ITAPS project is developing common interfaces to mesh (iMesh), geometry (iGeom), and 
other data, and services based on them [1].  The interfaces are designed to be datastructure-neutral, 
and can be called directly from C, C++, and Fortran applications.  IMesh defines a data model 
consisting of entities (the finite element plus polygons and polyhedra), entity sets (arbitrary groupings 
of entities and other sets), the interface instance or “root set”, and tags (data annotated on members of 
any of the other data types).  Services are available for mesh smoothing [2] and adaptive mesh 
refinement [3], to name a few.  The ITAPS interfaces are being used as the basis for the SHARP 
reactor simulation project [4], which performs the coupled solution of thermal/hydraulics and 
neutronics for fast reactor cores.  Solution transfer plays a major role in this effort. 

The solution mapping process consists of transferring a field from a source mesh to a target mesh, 
where the source and target meshes are each used by a specific physics, are represented in iMesh, and 
are distributed over a parallel machine.  In this work we focus on solution transfer for overlapping 3D 



 
 
 
 
 
 

domains.  Motivated by a component-based approach to multi-physics code development, we make 
the following assumptions when designing solution transfer capability: 

1. Each physics is free to choose the mesh type and parallel distribution best for that physics, 
without regard for its suitability for solution transfer. 

2. Each physics type and mesh is distributed across a set of processors, defined by an MPI 
communicator for each mesh 

3. If multiple physics types are assigned to a given processor, the mesh for all physics on that 
processor is stored in a single iMesh instance, and that instance communicates with all other 
processors containing pieces of any of those meshes. 

There has been a great deal of previous work on the topic of solution transfer (e.g. see Refs. [5-6]).  
Many papers focus on the mathematical properties of mapping solutions, with various constraints 
imposed which are specific to the physics being solved.    Also, various mapping functions are used, 
depending on the shape functions used to compute the field.  Despite these variations, there are also 
many similarities in the various approaches to parallel solution transfer.  For example, most 
approaches require locating one mesh in another, communicating fields between processors, and 
normalizing results after interpolation (though the method actually used in that normalization may 
vary).  Hence, we approach the problem of solution transfer from a process point of view, where 
distinct steps are implemented in a modular fashion.  This allows substitution of one or more specific 
steps, e.g. mapping function, while reusing other parts of the implementation. 

2.  Parallel Solution Transfer Algorithm 

The parallel solution transfer process is broken down into several functions: 

Initialization: We assume the mesh has been read onto the machine and is initialized (with parallel 
interfaces) according to the assumptions above.  Parallel details of the mesh (interface and partitioning 
sets, communicator, etc.) are encapsulated in the iMesh instance.  To facilitate point location on a 
source mesh, a kdtree decomposition is computed for the local part of the source mesh on each 
processor.  In addition, the bounding box corner points for the root node of this tree on each processor 
is sent to all processors holding target mesh.  These box coordinates are used to narrow the search for 
source elements containing each target point, which reduces parallel communication during this 
process. 

Point Location: Point location is the process of choosing points at which data will be coupled 
(usually derived from a target mesh), and locating the processor(s), element(s), and parametric 
coordinates in those element(s) that contain each target point.  The source element(s) containing a 
given point can be on the local or remote processor.  The algorithm used in this phase is shown in 
Figure 2.1.  In this case, target points are derived from the target mesh, but need not be restricted to 
vertices in that mesh.  This algorithm reduces data communication by storing point location data on 
the source mesh processor, and passing an index into that list to the target mesh processor requesting 
the interpolation point.  This incurs a small extra storage cost (one tuple of three integers per target 
point) but reduces communication during the interpolation phase.  All processors holding source and 
target mesh participate in the scatter/gather communication.  In theory this communication could be 
optimized in cases where the target and source processor sets were disjoint (no processor held both 
source and target mesh).  However, it is unclear whether that would save much communication time, 
or whether it would be worth the added complexity in the application. 



 
 
 
 
 
 

Interpolation: During the execution of a physics component, field values are computed and stored on 
various entities in the source mesh on each processor.  This process may be repeated for iterations 
working towards some steady state, or as part of a time advancement calculation.  The field values on 
this source mesh must be interpolated onto the target mesh.  The algorithm used in the interpolation 
stage is described in Figure 2.  As described in the introduction, our approach is modular, allowing the 
application to choose the type of shape function used for the interpolation.  In our current 
implementation, the shape functions are implemented in the iMesh/MOAB library.  This is discussed 
more later.  The only requirement in this implementation is that the location of the target point within 
the element be represented using three double precision numbers whose bounds are between -1 and 1. 

Normalization: After interpolation, a field is assigned values at target points.  If repeated 
interpolations are done from one mesh to another and back again, the values of the field can “drift” 
due to numerical roundoff error and other factors, depending on the shape function evaluations.  In 
some cases this drift can be disregarded, but in others it can add or remove energy in the physical 
system.  To avoid this, the coupler also provides for normalizing some integrated quantity over the 
target mesh to match the same integrated quantity on the source mesh.  Currently, we only implement 

the global integrated quantity, according to the integration function associated with the shape function 
used in the interpolation.  This is discussed more later. 

1. Choose field to interpolate, f 
2. Scatter/gather Tu4(j, i, k, f) using j as the destination processor; j is replaced with the 

source processor i 
3.  Tu4(j, i, k, f)[l], interpolate f(e, pqr),  e, pqr  Tu3(e, pqr)[k] → f  Tu4(j, i, k, f)[l] 
4. Scatter/gather Tu4(j, i, k, f) using j as the destination processor; j is replaced with the 

source processor i 
5. Tu4(j, i, k, f)[l], f → f[i] 
6.  Tu5(i, k)[l], interpolate f(e, pqr), e, pqr  Tu3(e, pqr)[k] → f[i] 

Figure 0: Algorithm for interpolation phase of solution coupling. 

 1. Choose target points ti 

 2.  ti : 
(a)  root box Bj containing ti :  

 i. If j != p add tuple Tu1(j, i, xyz), where xyz are the coordinates of ti  

 ii. Else add tuple Tu_tmp(i) 
 3. Scatter/gather Tu1(j, i, xyz), using j as destination processor; j gets replaced on destination 

processor with source processor 
 4.  tu1  Tu1 

(a) Traverse the source mesh kdtree to find the leaf node(s) whose boxes contain ti 

(b)  element e in each leaf node, find the natural coordinates pqr in e 
(c) If pqr  [0, 1], add tuple Tu2(e, pqr)[k], and tuple Tu3(j, i, k)[l] 
(d) Else add tuple Tu3(j, i, -1)[l] 

 5. Scatter/gather Tu3(j, i, k), using j as destination processor; j gets replaced on destination 
processor with source processor  

 6.  tu3  Tu3(j, i, k), if k != -1, add tuple Tu4(j, i, k, f)[l], where f is a double-precision 
parameter used in the interpolation phase 

Repeat steps 4a-c for all tuples in Tu_tmp; in step 4c, put contained points in Tu5(i,k) instead of 
Tu3 
 
 

Figure 0: Algorithm for point location phase of solution coupling. 



 
 
 
 
 
 

3.  Coupling Results 

Error! Reference source not found. shows the ABTR reflector assembly model, with different 
colors used to indicate different geometric volumes. The source mesh consists of 12k hexahedral 

elements, while the target mesh contains 130k tetrahedral elements.  For these examples, an analytic 
function is defined at hexahedral mesh vertices, and this field is mapped to the target mesh vertices 

based on trilinear basis functions.  The original fields and the coupled results are also shown in  

Figure 1:  Geometry and target mesh for the ABTR reflector (left); source field defined on hexahedral 
mesh (middle); transferred field on target tetrahedral mesh (right). 

.  Note that this shows a “pseudocolor” plot, which interpolates the vertex values to show a 
smoothly-varying field.   

 

Figure 1:  Geometry and target mesh for the ABTR reflector (left); source field defined on hexahedral 
mesh (middle); transferred field on target tetrahedral mesh (right). 

Run times for the various coupling steps are shown in Figure 2; normalization time was not 
measured.  The data shown is for coupling the same meshes on increasing numbers of processors. In 
absolute terms, the initialization of the problem dominates the other phases in this problem, with the 
interpolation phase accounting for a maximum of 0.06%, for the 32-processor run.  For problems 
where the mesh is not deforming, the interpolation stage is the only one repeated for each coupling 
step, therefore these times will be acceptable.  Parallel efficiency shows mixed results, with poor 
scaling for mesh import and interpolation, and moderate to good scaling for instantiation and point 
location.  Although interpolation time appears to scale quite poorly; absolute times for this portion of 
the example were below 0.001 seconds, which is close to the clock tick size.  Timing results should be 
generated on larger problems to better assess scaling of the this step. 

 

 

Figure 2: Execution time for coupling (left), parallel efficiency (right). 



 
 
 
 
 
 

Several other conclusions can be drawn from this data.  First, the mesh import time is not being 
reduced as quickly as other times with increasing processor counts.  The capability to read only those 
portions of mesh assigned to a given processor is already under development. 

Second, the point location algorithm described in Figure 0 includes a sequential search over the 
bounding box extents for each processor for each point being interpolated.  This step will grow in cost 
as the number of processors increases.  We intend to develop a tree-based search of those boxes as 
well, bringing scaling closer to O(log(p)) than to O(p) for this part of point location.  Since the tree 
structure is already implemented, the development of this capability will be very straightforward. 

Finally, we note that normalization of the solution over all processors is currently not done, since a 
vertex-based field is being mapped in these examples.  However, that step should not require a great 
deal of execution time, since most of the element-based calculations are local to each processor, 
followed by a reduction of results over all processors 

4.  Summary & Future Work 
This report describes the formulation and implementation of a parallel solution coupling capability.  
The coupling process consists of mesh and coupler initialization, point location, interpolation, and 
normalization.  Coupling results show good qualitative agreement with the field being coupled.  
Scaling varies for the process steps; the interpolation step scales poorly, but takes a negligible amount 
of absolute time compared to other steps.  In the case of static mesh, this step is the only one repeated 
for each iteration or time step.  Larger examples must be run to investigate whether this step scales 
well. 

The implementation of solution transfer in MOAB will be extended in various ways.  More 
interpolation methods will be added as needed, based on the physics components being coupled.  
Higher-order basis functions are needed immediately, and have already been implemented.  
Normalization over specific subsets in the mesh is also needed, to focus on specific sub-regions in the 
problem.  This extension will be straightforward based on material sets defined in the source and 
target meshes.  Finally, tuning the interpolation and normalization methods to achieve various 
conservation properties will also be studied.  This is a research topic, which will be of great interest to 
the scientific community as coupled multi-physics simulations become more common. 
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