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SUMMARY

In multiphysics simulations using a partitioned approach, each physics component solves on its own
mesh, and the interfaces between these meshes are in general non-matching. Simulation data (e.g.
jump conditions) must be exchanged across the interface meshes between physics components. It is
highly desirable for such data transfers to be both numerically accurate and physically conservative.
This paper presents accurate, conservative, and efficient data transfer algorithms utilizing a common
refinement of two non-matching surface meshes. Our methods minimize errors in a certain norm
while achieving strict conservation. Some traditional methods for data transfer and related problems
are also reviewed and compared with our methods. Numerical results demonstrate significant advantages
of common-refinement based methods, especially for repeated transfers. While the comparisons are
performed with matching geometries, this paper also addresses additional complexities associated with
non-matching surface meshes and presents some experimental results from 3-D simulations using our
methods. Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Detailed and accurate simulations of complex systems frequently require integration of multiple
physical disciplines, such as fluid dynamics, solid mechanics, and combustion, in an efficient
and accurate manner. The multidisciplinary nature of such systems suggests a partitioned
approach, where each discipline solves its own equations over its own geometric domain,
and jump conditions are exchanged periodically at the interface between domains [1–3]. In a
typical simulation, the surface meshes at the interface are non-matching, meaning that their
combinatorial structures differ and their geometric realizations may have discrepancies due
to discretization or rounding errors. Such non-matching meshes and associated data transfer
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problems also arise in other scientific applications, such as adaptive meshing, multigrid methods,
texture mapping, and shape morphing.

This paper addresses the problem of transferring data between non-matching interface meshes,
with the focus on repeated data transfer in time-dependent multiphysics simulations. In these
applications, data transfer must be numerically accurate and physically conservative. Numerical
accuracy means small errors in a specific norm. Conservation corresponds to the equilibrium at
the interface, which for many applications is required by the physical laws of the underlying
problem, such as balance of forces or conservation of mass. For applications involving repeated
data transfer, achieving both accuracy and conservation is particularly important and at the same
time very difficult, because errors may accumulate across iterations, and a scheme that is both
accurate and conservative tends to introduce smaller errors and deliver better convergence than
non-conservative or inaccurate ones.

1.1. Problem description

In finite element and finite volume methods for numerical computations, data associated with a
mesh are typically specified at a finite number of discrete points, referred to as control points.
In finite element methods, data values are usually specified at the nodes. Together with the
basis functions (or shape functions, typically piecewise linear or quadratic) associated with the
nodes, these nodal values determine a piecewise polynomial interpolant over the underlying
space of the mesh. In finite volume methods, data values are specified either at nodes or at
cell centres, and an interpolant is defined piecewise over the control volumes of the mesh that
surround or are incident on the control points.

This paper considers the problem of passing information from the control points of one mesh
(the source mesh) onto the control points of another mesh (the target mesh). It focuses on
cases where the interpolant over the mesh is given by a linear combination of basis functions
associated with the control points, whose coefficients are their corresponding data values. These
interpolants include those used in finite element methods and some variants of finite volume
methods (for example, a first-order cell-centred finite volume method, where the control points
are cell centres and the basis functions are piecewise constant). Let m be the number of
source control points and n be the number of target control points. Let f = ∑m

i=1 fi�i denote
the source function, where fi = f (si ) and �i are the value and basis function, respectively,
associated with the ith source control point si , and let g = ∑n

i=1 gi�i be the target function,
where gi = g(ti ) and �i are associated with the ith target control point ti , respectively.
Technically, the data transfer problem considered in this paper is to determine the gi given
the �i , fi and �i . The residual of data transfer is f − g. A norm of the residual measures
accuracy, and the integral of the residual measures conservation.

1.2. Common refinement

This paper presents accurate and conservative methods for data transfer and efficient techniques
for implementing them. Our data transfer methods use a data structure called the common refine-
ment of two non-matching meshes. A common refinement of two meshes is a mesh composed
of elements that subdivide the elements of both input meshes simultaneously, or, simply put,
the intersections of the elements of the input meshes. A common refinement defines, and allows
efficient query of, a unique nearby corresponding point on one side for every point on the other.
Furthermore, it enables accurate integration of functions that depend on the shape functions of
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Figure 1. Common refinement of blue (coarse) and green (fine) meshes and
its realizations on input surfaces.

the two meshes. For these reasons, the common refinement is important for our methods both
theoretically and practically. An efficient and robust algorithm for constructing the common
refinement for non-matching surface meshes is described in Reference [4]. Figure 1 shows an
example of a common refinement of two triangular surface meshes modelling an engine nacelle
of an aircraft. Readers are referred to Reference [4] for more details on the common refinement.

1.3. Organization

The remainder of the paper is organized as follows. Section 2 reviews some related problems
and methods. Section 3 presents a simple weighted-residual formulation that minimizes the
L2 norm of the error and describes a common-refinement based discretization along with
two ad hoc discretizations. Section 4 compares some interpolation techniques and discretized
weighted-residual schemes and demonstrates the advantages of the common-refinement-based
methods. Section 5 addresses issues arising from non-matching geometries of surface meshes,
and presents experimental results with surface meshes. Section 6 analyses some weaknesses of
the simple weighted-residual formulation and proposes a more advanced approach to overcome
such weaknesses by minimizing Sobolev norms. Section 7 concludes the paper with a discussion
of applications and future work.

2. RELATED PROBLEMS AND METHODS

This section reviews a few data transfer methods between meshes in multiphysics simulations
and similar contexts. There is a vast amount of literature on this topic. Our objective is not to
conduct an extensive survey as in References [3, 5], but to summarize previous methods that
are most accurate, most widely used, or most relevant to our methods.

2.1. Pointwise interpolation and extrapolation

Interpolation (and sometimes extrapolation) is probably the most popular method for transferring
data between meshes, and it is even sometimes used as a synonym for data transfer. In this paper,
interpolation, or pointwise interpolation, refers to the process of determining and evaluating

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2402–2427



COMMON-REFINEMENT-BASED DATA TRANSFER 2405

an interpolant to obtain values for some query points from given values at a finite number of
control points, where the interpolant must evaluate to the given values at the control points.
Extrapolation is required when a query point falls outside the range of the source mesh.

Pointwise interpolation can be categorized into two types. One type uses the source function
as the interpolant, and is sometimes referred to as consistent interpolation [6] or inverse
isoparametric mapping [3, 7]. Let t = ∑

i �i (t)si be a target control point, where the �i are
the shape functions associated with the source mesh. Consistent interpolation assigns the value
at t to be g(t) = ∑

i �i (t)f (si ). The other type constructs an interpolant using basis functions
of order higher than that of the source basis functions, and will be referred to as alternative
interpolation. A popular alternative interpolation is the thin-plate spline, which is obtained by
minimizing the bending energy of a thin plate [5, 8] and has the form

H(x) =
m∑

i=1
�i‖x − xi‖2 ln ‖x − xi‖

where ‖ · ‖ denotes the Euclidean distance and the �i are unknowns to be obtained by solving
an m × m dense linear system. Utilizing no topological information, thin-plate splines are
equally applicable to interpolation and extrapolation, similarly to a few other methods in that
class (such as infinite-plate splines, finite-plate splines, and multiquadric-biharmonic [5, 8]). The
cubic spline, obtained by enforcing continuity of second derivatives, is another widely used
interpolant in geometric modelling and other scientific applications [9–12].

A major drawback of interpolation and extrapolation schemes is that they are not strictly
conservative. When the shape functions are linear, the error in the conservation measure is
of second order for consistent interpolation, but is in general non-zero and is sensitive to the
second derivative of the input function, as shown in Appendix A. Alternative interpolation can
deliver higher order accuracy but is still non-conservative. If the second derivative is large
or does not exist, then the loss of information can be arbitrarily large, unless the extremes
coincide with the nodes. For repeated transfers, accuracy and conservation measures may also
degrade quickly over time, as shown in Section 4.

2.2. Area-weighted averaging

For cell-centred data, area-weighted averaging is the simplest form of conservative data transfer.
In this method, the value of a target element is the weighted average of the values of the
source elements in contact, where the weights are the areas of the intersections between the
source and target elements. This method is sometimes called conservative rezoning (remapping)
[13–15]. For the discretization of conservative rezoning, integrations are usually evaluated
over the intersections of the source and target elements, or sometimes converted to boundary
integration. This method is a special case of the common-refinement-based discretization of
weighted-residual method that we describe later.

2.3. Mortar elements methods

Mortar element methods are general techniques for projecting data at interfaces between two or
more subdomains in a non-conforming domain decomposition. In these methods, the discretized
interfaces between subdomains are divided into the mortar side and the non-mortar side. Each
side forms a discretization of the interfaces, and data are projected from the non-mortar side
to the mortar side. The formulations of mortar element methods are also based on a weighted
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residual, where the weight functions are usually chosen from the space spanned by the basis
functions of the mortar side. Most investigations of mortar element methods have focused on
analyses of its semidiscrete form in the context of non-conforming domain decompositions
[16–19]. Their discretizations face similar issues as the weighted-residual methods, which are
the focus of Section 3.

2.4. Specialized methods

Pointwise interpolation and weighted residual are generic methods that are applicable to a
wide range of problems. There are also methods designed for specific applications that do not
fall directly into the above categories but frequently are variants or combinations of them. A
particular example of specialized methods is load and motion transfer in fluid–solid interaction
for aeroelasticity problems. In these problems, tractions from the fluid must be converted into
nodal loads (equivalent to the load vectors in weighted residual methods) on the solid [6, 20].
Displacements of the solid are then transferred back to the fluid, typically using consistent
interpolation. By taking advantage of knowledge about their specific applications, specialized
methods can be more efficient than generic methods. However, they frequently must also face
the same discretization issues as those of weighted residual methods and can also benefit from
common-refinement-based discretizations.

3. L2 MINIMIZATION

A simple weighted-residual formulation is to minimize the L2 norm of the error. This section
studies the properties of its semidiscrete form, assesses a couple of its unsuccessful discretiza-
tions, and presents a more accurate discretization based on the common refinement.

3.1. Semidiscrete formulation

Observe that the L2 norm of g−f is minimized if �
∫
�(g−f )2 dx/�gi = 0 for i=1, . . . , n. Since

�
∫

�
(g − f )2 dx

�gi

=
�

∫
�
(
∑n

j=1 �j gj )
2 dx

�gi

− 2
�

∫
�

∑n
j=1 �j gjf dx

�gi

+
�

∫
�

f 2 dx

�gi

= 2
n∑

j=1

∫
�

�i�j dxgi − 2
∫

�
�if dx

this condition reduces to an n × n linear system Mx = b, where x is an unknown vector
composed of the gi , M is the consistent mass matrix (or simply mass matrix) with entries
Mij = ∫

� �i�j dx, and b is the load vector with components bi = ∫
� �if dx. The preceding

derivation is based on a minimum principle, or the Rayleigh–Ritz method, and this data transfer
method will be referred to as L2 minimization. The same set of equations can also be obtained
based on the weak form, or the Galerkin method. Specifically, the equation g = f is converted
into a set of integral equations ∫

�
wg dx =

∫
�

wf dx
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where the w are weight functions (or test functions), chosen to be the target basis functions
�i . This derivation corresponds to an orthogonal projection of f onto the function space of the
weight functions. The latter formulation is used in Reference [2]. Because of the equivalence
of the two formulations, this method (along with many others) belongs to the Rayleigh–Ritz–
Galerkin methods.

To investigate the accuracy of L2 minimization, let g̃ denote the solution of L2 minimization
and ĝ denote the solution from linear interpolation. From the Rayleigh–Ritz formulation, g̃

is optimal in the L2 norm in the space spanned by the target shape functions, and hence
‖g̃ − f ‖2 � ‖ĝ − f ‖2, which is O(h2

s + h2
t ) from the analysis in Appendix A. Let F denote

the analytical function that is discretized by the source function. If F ′′ is continuous and
bounded, then ‖g̃ − F‖2 � ‖g̃ − f ‖2 + ‖F − f ‖2, which is also O(h2

s + h2
t ). Both bounds are

tight asymptotically, as can be verified by fixing one mesh while refining the other. A key
advantage of L2 minimization over pointwise interpolation is that it is conservative in the sense
that

∫
� g̃ dx = ∫

� f dx, because g̃ − f is orthogonal to any function v in the function space
spanned by the �i , i.e.

∫
�(g̃ − f )v dx = 0, and constant functions are in this space.

L2 minimization has some nice properties. First, the mass matrix M is sparse and symmetric,
which is obvious from the definition Mij = ∫

� �i�j dx and the near orthogonality among the
�i . M is also positive definite, because xTMx = ∫

� g̃2 dx = ‖g̃‖2
2 � 0, and ‖g̃‖2

2 = 0 if and only
if g̃ = 0. Second, the condition number of M is bounded by a constant that depends only on the
mesh quality of the target mesh, so L2 minimization is always well conditioned for well-shaped
meshes, independent of the order of the shape functions or the number of elements. Because of
these properties, the linear system Mx = b can be solved efficiently using an iterative method.
Furthermore, L2 minimization has a stabilizing effect in the sense that ‖g̃‖2 � ‖f ‖2 (i.e. it
underestimates the ‘energy’ of the system), because (g̃ − f )2 + g̃2 = f 2 + 2(g̃ − f )g̃ = f 2

(the Pythagorean theorem). Some of these properties are general to the Rayleigh–Ritz–Galerkin
methods [21].
3.2. Ad hoc discretizations

To discretize L2 minimization, the key question is how to integrate
∫
� �i�j dx and

∫
� �if dx.

A few discretization schemes have been used in the literature. However, these schemes lack
mathematical foundation and undermine the accuracy and/or conservation properties of L2
minimization.

3.2.1. Source-based discretization. In Reference [2], Cebral and Löhner computed
∫
� �if dx by

numerical quadrature over elements of the source mesh and computed
∫
� �i�j dx over elements

of the target mesh; see Reference [22, Chapter 8] for an introduction to numerical quadrature.
The argument for this choice is that this discretization is conservative as in the semidiscrete
form. Unfortunately, this scheme is sensitive to relative mesh resolution and is particularly
poor if the source mesh is coarser than the target mesh. In general this scheme is zeroth-order
accurate for a fixed relative mesh resolution: if the input meshes are refined simultaneously
with a fixed ratio of mesh sizes, the error does not go to zero. As a consequence, this scheme
cannot transfer even a constant function exactly, whereas the semidiscrete L2 minimization
is capable transferring linear functions exactly. For general functions, this discretization can
cause high-frequency oscillations, as shown in Section 4. The reason for such oscillations is
a violation of the regularity assumption of numerical quadrature: A quadrature rule in general
assumes smoothness of the integrand function within an interval, and they can be arbitrarily
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inaccurate for non-smooth functions [22]. The target shape functions are piecewise polynomials
within a source element for non-matching meshes, and their slopes become more and more
steep as the meshes become more refined, which leads to unbounded errors in b for the
source-based scheme.

3.2.2. Target-based discretization. Some older methods evaluate both
∫
� �i�j dx and

∫
� �if dx

over elements of the target mesh [20]. Because f is piecewise polynomial within each target
element, the regularity assumption is also violated in this discretization. However, if the exact
function has continuous and small second derivative, then f is typically well behaved within
a target element, and hence the discretization behaves reasonably well. In particular, it can
transfer linear functions exactly, and is less oscillatory than source-based discretization for
general functions. The drawback of the target-based discretization is that it is not strictly
conservative, similar to pointwise interpolation.

3.3. Common-refinement-based discretization

The failures of the above two schemes naturally lead us to a common-refinement based dis-
cretization. Because the shape functions �i and �i are polynomials within each source and
target element, respectively, the functions �if are polynomials within each subelement of a
common refinement. Therefore, provided the degrees of the quadrature rules are sufficiently
high, the load vector can be computed exactly by integrating �if over the subelements. The
mass matrix can also be computed exactly with numerical quadrature over target elements or
subelements. For instance, if the source and target basis functions are linear, then the functions
�i�j and �if are quadratic, and applying a quadrature rule of degree at least 2 integrates them
exactly over the target elements and the subelements, respectively. With this discretization, L2
minimization is truly conservative subject only to rounding errors, and is at least as accurate
as consistent interpolation. When the shape functions are piecewise constant, this discretization
of the weighted residual method reduces to area-weighted averaging.

One might ask whether exact integrations are necessary. Let k be the highest degree of a
polynomial in the shape functions. In References [21, 23], it has been shown that for an elliptic
PDE of order 2m, a quadrature rule with degree at least 2(k − m) is generally required to
avoid loss of convergence rate. The L2 minimization is essentially a zeroth-order PDE, and
hence in general it requires a quadrature rule of degree 2k, which is sufficient to integrate
the functions exactly. Besides potential loss of accuracy, an inexact quadrature rule may lead
to ill-conditioned or even singular mass matrices; such an example is given in Appendix B.
Therefore, exact integration is preferable for optimal accuracy and robustness.

4. NUMERICAL COMPARISON

This section compares the solutions of consistent interpolation, thin-plate splines, cubic splines,
and three discretization schemes for L2 minimization for repeated transfers, by investigating
their solutions after transferring an analytic function back and forth between two meshes for a
large number of iterations. While such a simple repeated transfer problem is unlikely to occur in
practice, it serves as an effective ‘microscope’ for evaluating the methods, because weaknesses
of the methods become magnified by the iterations and hence are easily identified. It also
resembles the repeated exchange of jump conditions in coupled multiphysics simulations. Com-
parisons of conservative schemes with more realistic applications are described in Section 7.1
and in Reference [24], and those results are consistent with those obtained from the present tests.
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4.1. Accuracy in one dimension

Our 1-D tests transfer Runge’s function 1/(1 + 25x2) [22, Chapter 7] back and forth between
two uniform grids. This function is transferred from the coarse grid onto the fine grid, and
then the solution is transferred back onto the coarse grid, which accounts for one iteration. The
errors after power-of-two iterations are evaluated to investigate the growth of errors. The first
test uses two grids with 32 and 45 nodes, and Figure 2 shows the results on the coarse grid
after 2i iterations, where i ranges up to 3 for the source-based scheme and up to 6 for other
methods. Figure 3(a) plots the relative errors up to 212 iterations, with the errors computed as
‖gnumerical − gexact‖2/‖gexact‖2, where g denotes a vector composed of values at the nodes of
the coarse mesh. A second test uses two grids with 61 and 89 nodes, and Figure 3(b) plots the
errors with these grids. For the discretizations of L2 minimization, linear elements are used in
all cases except for the ‘common refinement 2’ in Figure 3(b), which uses 30 and 44 quadratic
elements on the two grids, respectively.

In our tests, cubic splines deliver the best results among the interpolation schemes, while thin-
plate splines are nearly an order of magnitude less accurate than cubic splines, and consistent
linear interpolation is an order of magnitude further less accurate. In a previous study Smith
et al. [3], performed an extensive comparison of interpolation schemes commonly used in
physical simulations, and consistent interpolation and thin-plate splines were among the best.
Our results indicate that cubic splines are superior to the interpolation schemes that were
considered in Reference [3] in terms of accuracy.

For L2 minimization, the two-point Gaussian quadrature rule (of degree 3) is used over
the element of the source, target, or common refinement for linear elements when integrating
Mij and bi , and the three-point Gaussian quadrature rule (of degree 5) is used for quadratic
elements. In both cases, integrations are exact for Mij . Among the discretization schemes,
the source-based introduced oscillations after one transfer, whereas the target-based introduced
oscillations later; the oscillations grow quickly in both cases and cause the solutions to blow
up. Note that grid refinement had no effect on the errors associated with the source-based
scheme, confirming our claim that such a discretization is zeroth-order accurate.

The common-refinement based scheme, on the other hand, performed consistently well in both
cases. It does not introduce any oscillation, as integrations are exact. The common-refinement
scheme with linear shape functions is only second-order accurate, and hence it is expected to be
less accurate than cubic splines for a single transfer. However, its associated errors grow much
more slowly than other methods for repeated transfers, and it eventually ends up as accurate as
cubic splines. The common-refinement scheme with quadratic elements is nearly as accurate as
cubic splines. In terms of conservation, the error in the integrals is on the order of 10−12 for
the common-refinement schemes compared with 10−2 using cubic splines after 212 iterations.
Therefore, the common-refinement based L2 minimization improves accuracy and conservation
substantially compared with traditional methods, especially for repeated data transfer.

4.2. Accuracy in two dimensions

The 2-D test transfers a function between two uniform Cartesian grids of 32×32 and 45×45 over
the domain [−3, 3] × [−3, 3]. This test used the peaks function in MATLAB [25], defined as

peaks(x, y) = 3(1 − x)2e−x2−(y+1)2 − 10
(x

5
− x3 − y5

)
e−x2−y2 − 1

3
e−(x+1)2−y2
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Figure 2. Solutions of repeated transfers of Runge’s function up to 64 iterations.
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Figure 3. Relative errors in repeated transfer of Runge’s function: (a) repeated transfer between
32 and 45 nodes; and (b) repeated transfer between 61 and 89 nodes.
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Figure 4. 3-D plot of peaks function.

which is obtained by translating and scaling Gaussian distributions. Figure 4 shows a 3-D plot
of the function on the coarser grid. As for 1-D cases, this test also compares three interpolation
schemes and three discretizations of L2 minimization.

Figure 5 plots in logarithmic scales the relative errors of the resulting functions on the coarser
mesh for up to 2n iterations, where n is 9 for cubic splines and the common-refinement based
scheme, 2 for the source-based, and 5 for the others. Smaller numbers of iterations were chosen
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Figure 5. Relative errors in repeated transfer of peaks function.

when the errors became unreasonably large, or, in the case of thin-plate splines, the computations
took too much time. Figure 6 shows the contours of the original function in solid lines and
of the resulting functions after 2i iterations in dashed lines, with i ranging up to 2 for the
source-based and up to 5 for the other methods. Consistent with 1-D results, cubic splines
deliver the best results among interpolation schemes, followed by thin-plate splines, which
introduce some artefacts in the contours near boundaries. Among the minimization schemes,
the source- and target-based introduce oscillations. The common-refinement-based scheme is
not nearly as accurate as cubic splines initially but becomes comparable with cubic splines
at the end. Using higher-order shape functions, the common-refinement scheme would deliver
even better results, as already shown in one dimension.

4.3. Cost evaluation

Computation and storage costs are important considerations when choosing a numerical met-
hod. For large-scale simulations with potentially very large meshes, asymptotic performance
is particularly important. Table I summarizes the asymptotic computational costs and required
storage associated with data transfer. Among the methods, all except thin-plate splines require
some sort of search operations, either to associate target nodes with source elements (for
consistent or cubic splines), associate quadrature points of the target mesh with source elements
(for the target based) or vice versa (for the source based), or ultimately to construct a common
refinement of the meshes. In general, associating a point with an element of a mesh with n

elements takes at least O(log n) time. However, associating all points would take O(m + n)

for well-shaped meshes by taking advantage of topological information and locality [4, 26].
After associating the meshes, consistent interpolation involves only evaluating some polyno-

mials at each target point. Every other method requires evaluating some polynomials at either
control or quadrature points to construct a linear system, and then solving the linear system.
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Figure 6. Contours of functions after 2i iterations, where i � 2 for source-based and � 5 for others.

For L2-minimization, the solutions of the linear systems are the values at the target control
points, but for cubic and thin-plate splines, another round of evaluations of polynomials is
necessary to obtain values at target points. The fourth column of Table I lists the total costs
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Table I. Asymptotic computation and storage costs of various methods. O(S) indicates sparse solver.

Search time Solution time

Method Pointwise Topological Evaluation Solve Storage

Consistent O(log m) ≈ O(m + n) O(n) N/A O(m + n)
Cubic O(log m) ≈ O(m + n) O(m + n) O(S) O(m + n)

Thin plate N/A N/A O(m2 + mn) O(m3) O(m2 + n)
Source based O(log n) ≈ O(m + n) O(m + n) O(S) O(m + n)
Target based O(log m) ≈ O(m + n) O(n) O(S) O(m + n)
Common refinement N/A ≈ O(m + n) ≈ O(m + n) O(S) ≈ O(m + n)

Table II. Normalized execution times in one and two dimensions.

Consistent Cubic Thin plate Source Target Common refinement

1-D 1 5.88 13.87 6.60 6.65 7.12
2-D 1 4.3 1214.5 115.1 132.4 246.5

of evaluating polynomials before and after linear solves, and the fifth column lists the costs of
linear solves. Because the thin-plate splines are global methods involving dense linear systems,
the cost of evaluations is quadratic and that of linear solves is cubic in the input sizes. The
linear systems in other methods are sparse, with the number of non-zero entries proportional
to the input sizes, and hence they can be solved much more efficiently. The space complexity
is quadratic for thin-plate splines but linear for all other methods.

Table II shows the execution times of the test cases in one and two dimensions, including
both search and solution times, on a dual 2 GHz Power Mac G5 system. The calculations were
carried out in MATLAB, which compiles a function M-file when the function is first executed
[25]. To outweigh the overhead of runtime compilation, each type of transfer was run for a large
number of iterations (210 for 1-D and 25 for 2-D), and the execution times were normalized
by dividing them by the time of consistent interpolation for each row. Consistent and cubic
interpolations in 1-D are done using MATLAB’s toolbox function interp1 with the methods
‘∗linear’ and ‘∗spline’, respectively, where the ‘∗’ indicates that the grid is equally spaced
and monotonic for faster interpolation; the 2-D computations are done using interp2 with the
corresponding methods. The codes for L2 minimization and for thin-plate splines were written
and manually optimized by the authors. For L2 minimization, the mass matrices are stored
using sparse-matrix format, and the majority of the execution time is spent on construction of
the right-hand side of the system. For thin-plate splines, the code utilizes vector operations for
polynomial evaluations and uses MATLAB’s built-in dense linear solver, and the majority of
the execution time is spent on the linear solver in two dimensions. Considering accuracy and
efficiency, the cubic spline is the best choice for non-conservative transfer. Conservative transfer,
in particular the common-refinement-based weighted-residual method, has the same order of
time complexity as cubic interpolation but is two orders of magnitude more expensive than
consistent interpolation and cubic splines. However, in the context of multiphysics simulations,
the size of the interface is typically orders of magnitude smaller than the volume, and hence
such an increase of a constant factor still leads to an insignificant increase of the overall cost,
as observed from our experiences.
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5. TRANSFER BETWEEN SURFACE MESHES

The preceding discussions have assumed the geometries of the interfaces are perfectly match-
ing. For curved interfaces, such as surface meshes, the underlying spaces of the meshes are no
longer necessarily the same. In Reference [4], this issue was addressed in the context of con-
structing a common refinement for non-matching meshes by defining a continuous and bijective
mapping between these surface meshes. In the common refinement, each subelement generally
has two distinct realizations, which may have different areas and potentially different normal
directions. In L2 minimization, the functions �if must be integrated over the subelements. The
inconsistency in geometry of the input meshes raises the following question: Which realization
should be used during integration? This question does not have a simple answer, unfortunately.
To be more precise, in transferring a uniform function from one mesh onto another mesh, there
are two questions with potentially contradictory answers:

1. Should the target function be uniform?
2. Should the integrals of the source and the target functions be equal?

These two questions correspond to the accuracy and conservation objectives of data transfer,
respectively. The answers to these questions ideally should both be yes, and this can be achieved
for meshes with matching geometry using weighted-residual methods. If the underlying spaces
of the input meshes have different areas, however, then these two objectives in general contradict
each other and must be adjusted to resolve this contradiction.

A few methods have been proposed in the literature to transfer data between meshes with
non-matching geometry. In particular, a closest-point interpolation scheme is sometimes used,
which interpolates the value for a target node from its closest point in the source mesh [27],
and in the case of thin-plate splines, the problem would implicitly be treated as extrapolation.
These schemes compromise conservation. The source-based conservative schemes, on the other
hand, compromise accuracy and lead to oscillations, even with matching geometry. None of
these approaches appears to be satisfactory. The problem ultimately boils down to the notion
of conservation for non-matching meshes, which corresponds to equilibrium (or balance) at
a well-characterized and physically unique interface. Interpolation schemes simply omit this
equilibrium requirement. Existing conservative schemes, on the other hand, enforce equilibrium
over two distinct surfaces, which is neither physically nor numerically justified. Furthermore,
insisting on conservation but compromising accuracy is especially undesirable for general pur-
pose data transfer methods because it may cause unexpected side effects. For example, if
interface displacements are transferred from one mesh onto another, using such a scheme can
cause the two meshes to separate because the one with smaller area will systematically move
faster than the one with larger area.

To resolve the inconsistency, a better alternative is to introduce a unique reference surface
between the input mesh surfaces, sometimes called a virtual surface. The source and target
function are projected onto the reference surface, upon which conservation is imposed. This
approach is more meaningful because equilibrium is now established over the reference surface,
instead of two distinct surfaces. In practice, the reference surface can be chosen more or less
freely. A rational choice, which is readily available to us through the common refinement, is a
convex combination of the input meshes. Given input meshes S and T , a convex combination,
denoted by �S + �T , is defined as the point set

�S + �T ≡ {x = �s + �T (s) | s ∈ S}
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Figure 7. Two non-matching cylindrical surface meshes.

where � and � are two non-negative constants with �+� = 1, and T (s) denotes the correspond-
ing point of s inferred from the common refinement. Intuitively, if a line segment is drawn
between every point s ∈ S and its corresponding point T (s), then �S + �T contains a point
from each of these line segments. Provided these line segments do not intersect, the resulting
point set is a surface with no self-intersection. With this reference surface, L2 minimization
becomes minimization of ∫

�S+�T

(f − g)2 dx

which is conservative in the sense that
∫
�S+�T

f dx = ∫
�S+�T

g dx.
To demonstrate the impact of non-matching geometry on numerical solutions, five tests were

performed to transfer a sinusoidal function back and forth between two cylindrical surface
meshes using five different schemes. Figure 7 shows the two meshes, one coarse and uniform
while the other fine and non-uniform. One of our tests used consistent interpolation, which
served as a reference for comparison. Another test used L2 minimization without a reference
surface, so that the mass matrix was computed using geometry of the target mesh while the
load vector was computed using geometry of the source mesh. The remaining three tests used
different combinations of reference surfaces: one used � = 1 in both transfer directions, so
the target mesh was the reference in either direction; another test used � = 0.5 for both
directions, so the average of the input surfaces was the reference; the fifth test used � = 0
for forward direction and � = 1 for backward direction, so that the uniform mesh was the
reference. Figures 8(left) shows the errors in L2 norm of the five schemes, where the curves
for the three reference-surface schemes overlap with each other. Figures 8(right) shows the
conservation measures evaluated on the uniform mesh. The common-refinement based schemes
performed much better than consistent interpolation in both accuracy and conservation. Among
the common-refinement based, the scheme without a reference surface achieved strict conser-
vation but was not as accurate as those with a reference surface, and its order of accuracy
depends on the mismatch of the geometry. When a reference surface is used, the accuracy did
not appear to depend on the choice of the reference, but strict conservation is achieved only
if there is a unique reference, on which the conservation measure should be computed.

6. SOBOLEV MINIMIZATION

L2 minimization gives accurate and conservative solutions for many cases, but unfortunately it
cannot always deliver satisfactory results. In particular, if the source function changes abruptly,
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Figure 8. Errors in L2 norm and conservation measures in transfer between surface meshes.
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Figure 9. Gibbs phenomenon in minimizing L2 norm.

this method may cause overshoots and undershoots, a behaviour similar to the Gibbs phe-
nomenon seen in Fourier analysis. Figure 9 shows an example that passes a step function

f (x) =
{

1 if x ∈ [0, 1]
0 if x ∈ [−1, 0)

from a cell-centred grid onto a node-centred grid with 101 nodes. There are oscillations near
the jump with an error of about 13%. Similar behaviour can also occur even when transferring
data between two node-centred grids, especially when transferring from a fine grid onto a
coarse one. These oscillations can be disruptive for some applications, where a solution as in
Figure 10 is preferable.
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Figure 10. Resolution of Gibbs phenomenon.

A few approaches are feasible to resolve these overshoots and undershoots. For simple
applications where jumps are isolated at well-characterized geometric features such as sharp
edges of a surface, the simplest and most effective approach is to split the interface into patches
along these features and to transfer data separately for each patch. Another approach is still to
solve for the whole interface but introduce non-linear limiters to the linear solvers (such as in
Reference [2]) or perform a postprocessing step to filter out oscillations after the solver (for
example using similar schemes as in Reference [28]). This section pursues a different avenue
by altering the objective function through minimizing a different norm, namely the Sobolev
norm, to damp out the oscillations.

Let k be a constant integer. Given a function f whose derivatives of all orders less than or
equal to k exist almost everywhere, the Sobolev norm of f is

‖f ‖Hk =
√

k∑
i=0

�i‖f (i)‖2
2

where f (i) denotes the ith derivative of f , and �i is its associated weight and is in general
non-negative. The L2 norm is a special case of the Sobolev norm with k = 0. Intuitively, if
the derivatives of the source function are known, a data transfer method can take advantage of
them to obtain a more meaningful solution, and this section exploits this idea. For simplicity,
this paper considers only the case k = 1 and �0 = 1, i.e. minimizing

‖g − f ‖2
H 1 = ‖g − f ‖2

2 + �‖g′ − f ′‖2
2

This method is referred to as Sobolev minimization. The first derivative of f = ∑
i �ifi

can be computed as f ′ = ∑
i �′

ifi , obtained by differentiating f element-by-element, or as
f ′ = ∑

i �if
′
i , where f ′

i is some derivative value at the node i supplied as input or computed
using a certain approximation. The first approximation is referred to as consistent differentiation,
and the second as alternative differentiation. Alternative differentiation can potentially deliver
higher order of accuracy than consistent differentiation.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:2402–2427



COMMON-REFINEMENT-BASED DATA TRANSFER 2419

Assume that consistent differentiation is used for g. The Sobolev norm is minimized if �
∫
�

(g − f )2 + �
(
g′ − f ′)2 dx/�gi = 0 for i = 1, . . . , n. Now

�
∫

�
(g − f )2 + �(g′ − f ′)2 dx

�gi

=
�

∫
�

(∑n
j=1 �j gj − f

)2 + �
(∑n

j=1 �j g
′
j − f ′

)2
dx

�gi

= 2
n∑

j=1
gi

∫
�

�i�j + ��′
i�

′
j dx − 2

∫
�

�if + ��′
if

′ dx

which again leads to an n × n linear system Sx = b, where S = M + �K is a weighted sum
of the mass matrix M and the stiffness matrix K, with entries Kij = ∫

� �′
i�

′
j dx, and b is

the modified load vector, with components bi = ∫
� �if + ��′

if
′ dx. As with L2 minimization,

Sobolev minimization is also conservative, because
∫
�(g − f )v + (g′ − f ′)v′ dx = 0 for any

function v in the function space spanned by the �i , and constant functions are in this space.
Note that this argument holds independently of how f ′ is computed.

Sobolev minimization shares some properties with L2 minimization: The matrix S is sparse
and symmetric positive definite, and this scheme stabilizes the solution in that ‖g‖H 1 � ‖f ‖H 1 .
However, because the stiffness matrix K is singular, the matrix S is not necessarily well
conditioned for large �. In general, � should be of order O(h2

t ), as a larger � would lead to
ill-conditioned systems as ht → 0. Furthermore, ‖f −g‖2

H 1 is proportional to O(�h2
t +h4

t +h4
s ),

and an � of order O(h2
t ) ensures the same order of accuracy as L2 minimization. To discretize

this method, a common-refinement-based scheme needs to be used and exact integration is
preferred for optimal accuracy. When computing Sij , because the degree of the polynomials
�′

i�
′
j is lower than that of �i�j , integrating to compute Kij requires a smaller number of

quadrature points than for computing Mij .

6.1. Smoothing effect

Sobolev minimization can effectively smooth out overshoots and undershoots, because such
oscillations tend to have large derivatives, and Sobolev minimization inhibits unwanted oscil-
lations by biasing the target function toward some prescribed derivatives. Figure 10 shows the
resolution of the Gibbs phenomenon of the example in Figure 9 using Sobolev minimization,
where � = h2

t /6, and f ′ is prescribed to be 0.
Sobolev minimization also has advantages in transferring data from a coarse grid onto a

fine grid. Consider transferring a piecewise linear representation of a smooth function from a
coarse grid with k intervals onto a fine grid with ck intervals, where c is a positive integer.
When minimizing the L2 norm, the target function would be identical to the source function,
because the source basis functions are in the space of the target basis functions. By specifying
continuously varying f ′, Sobolev minimization can construct a smoother representation on the
target mesh. To illustrate this effect, a test is performed to transfer Runge’s function from
a grid with 11 nodes onto another grid with 61 nodes, both with linear shape functions.
Figure 11(a) shows the target function after L2 minimization, which is identical to the source
function. Figure 11(b) shows the solution of Sobolev minimization, where � = 10h2 and centred
differences (except for boundary nodes) are used to compute the derivatives. Both solutions are
conservative and second-order accurate, but the function in Figure 11(b) is much smoother.
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Figure 11. Smoothing effect of minimizing Sobolev norm: (a) minimizing
L2 norm; and (b) minimizing Sobolev norm.

6.2. Gradient on surface

To apply Sobolev minimization to surface meshes, the gradients of the source and target
functions must be evaluated on a surface. For consistent differentiation, the gradient of a
function f is ∇f = ∑

i ∇�ifi , where

∇�i =
(

��i

�x
,
��i

�y
,
��i

�z

)T

Within each element, �i is locally parameterized by two local (or natural) coordinates (�, �).
Applying the chain rule leads to an underdetermined system J∇�i = d, where J is the Jacobian
matrix

J =




�x

��

�y

��

�z

��

�x

��

�y

��

�z

��




and

d =
(

��i

��
,
��i

��

)T

The gradient ∇�i can be solved as J+d, where J+ is the pseudoinverse of J computed as
JT(JJT)−1 [22, Chapter 3]. This solution is consistent with that in R2 if �z/�� = �z/�� = 0,
and it preserves the conservation property of Sobolev minimization as

∑
i ∇�i = 0. When com-

puting ∇�i for a subelement of the common refinement over a virtual surface �S + �T , the
matrix J is a linear combination of the Jacobian matrices of S and T , and d depends only on the
source elements. All derivatives then can (and should) be computed over the source and target
elements, and the subelements are used only for integration, not differentiation, so the condition
number of the linear system does not rely on the mesh quality of the common refinement but
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only on those of the input meshes. This fact is worth noting because the common refinement
can have arbitrarily narrow elements, which could otherwise lead to ill-conditioned systems.

6.3. Diagonal dominance of linear systems

By taking advantage of the free parameter � in the Sobolev norm, the structure of the linear
system can be altered, so that its solution can be obtained more efficiently. For 1-D with
linear basis functions, each element mass matrix M or element stiffness matrix K is a 2 × 2
symmetric matrix, and M + �K is a diagonal matrix if � = h2

t /6. This particular choice of �
leads to an explicit data transfer algorithm that inverts only a diagonal matrix. Unfortunately,
this diagonalization technique does not generalize to higher dimensions, because each element
matrix then has at least three distinct off-diagonal entries but there is only one free parameter.
Nevertheless, � can be chosen to make the matrix as diagonally dominant as possible, which
tends to improve the convergence rate of iterative solvers. In our numerical experiments, the
conjugate gradient method with Jacobi preconditioner frequently converges twice as fast for
Sobolev minimization with this optimization compared with L2 minimization.

7. DISCUSSION

This paper has analysed a number of numerical schemes for transferring data between non-
matching meshes. Among the conventional methods, high-order interpolation schemes are accu-
rate but not strictly conservative, although they are consistently conservative for smooth func-
tions. The L2 and Sobolev minimizations achieve both accuracy and conservation, and their
common-refinement-based discretization are advantageous compared with other conventional
methods for repeated data transfers. The conservative schemes for surface meshes presented in
this paper are implemented in Rocface, the interface code for 3-D multiphysics simulations at the
Center for Simulation of Advanced Rockets at the University of Illinois at Urbana-Champaign.

7.1. Applications

To demonstrate the effectiveness of the common-refinement based methods in multiphysics
simulations, a fluid–solid interaction problem has been investigated to compare these methods
with a popular load and motion transfer scheme in Reference [6]. The essence of this load
projection scheme is to obtain the forces (loads) at target nodes as Gj = ∑

i �j (si )Fi , where
the Fi = ∫

� f �i dx are the nodal loads at the source nodes si , and the �j are the target shape
functions. This scheme is conservative in the sense that

∑
Fi = ∑

Gj . The motion transfer is
done using consistent interpolation. In Reference [6], it was shown that this load and motion
transfer scheme conserves virtual work. As shown in Reference [29] and in Appendix C, virtual
work is also conserved by using L2 minimization for both displacements and tractions under
certain conditions.

Our experimental comparison uses a problem called burning cavity, where the solid is a ball
with a spherical cavity in the middle filled with gas (the fluid). The fluid applies uniform pres-
sure over the interface, which is a surface burning at a uniform speed, so that the solid deforms
and regresses uniformly. The fluid and solid are solved using Rocflo and Rocfrac, respectively,
both developed at the Center for Simulation of Advanced Rockets [30]. A tetrahedral mesh
is used in the solid, whose interface mesh is triangular, and a block structured mesh is used
in the fluid, whose interface mesh is quadrilateral. In one experiment, tractions (forces) and
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(a) (b)

Figure 12. Numerical results of displacements under uniform pressure and regres-
sion in fluid–solid interaction: (a) common-refinement based L2 minimization; and

(b) conservative load and motion transfer in Reference [6].

regression are transferred from the fluid to the solid and displacements are transferred from
the solid to the fluid, all using L2 minimization with the common-refinement discretization.
Different components of tractions and velocities are transferred independently of each other. In
another experiment, the load transfer scheme in Reference [6] is used for tractions and consis-
tent interpolations are used for velocities. Figure 12 shows the displacement after 500 iterations,
where a more uniform result corresponds to smaller errors. The error on the left, which uses
our common-refinement-based approach, is less than one percent compared against the analyt-
ical solution, whereas the error on the right is about twenty percent, demonstrating significant
advantages of using common-refinement based approaches in multiphysics simulations. The
errors are large in the latter method because its load transfer scheme is similar in spirit to the
source-based discretization for computing load vectors, except that the source nodes are used
instead of quadrature points. Another way to interpret the load transfer scheme in Reference
[6] is to view it as the source-based scheme applied to the dual of the source mesh. In coupled
simulations, the errors and oscillations associated with a source-based scheme worsen over time
as in our simple test of repeated transfers. A more extensive comparison of conservative load
transfer schemes has been conducted for two-dimensional fluid–solid interactions and will be
published in another paper [24].
7.2. Future directions

The common-refinement-based methods developed in this paper allow accurate and conserva-
tive data transfer in numerical simulations. Among the methods, Sobolev minimization allows
better flexibility and also delivers smoother results than L2 minimization. This paper investi-
gated adjusting the free parameter in Sobolev minimization to improve the efficiency of its
solution. Monotonicity preservation is another important objective for many physical applica-
tions. For low-order conservative schemes, area-weighted averaging preserves monotonicity. For
higher-order schemes, Sobolev minimization appears promising for preserving monotonicity,
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but selecting optimal values for the derivatives and control parameter is still a delicate issue
that warrants further investigation. Besides Sobolev norms, some other norms are also feasible

for minimization, such as the A-energy norm of a vector function ‖f‖A ≡
√∫

� fTAf dx, but
the linear systems for such a norm may be more expensive to solve for vector quantities
(such as tractions), because all components can be interdependent and must be solved for
simultaneously. A limitation of the common-refinement-based approach is that the geometry
of the source and target meshes in principle should discretize the same geometry, and some
applications may involve partially overlapping meshes [31–33] or physically disparate surfaces
[27]. For better generality from a practical point of view, Rocface will be extended to provide
support in such situations by gracefully resorting to less accurate or non-conservative schemes
when the common refinement is not applicable.

APPENDIX A: ERROR BOUNDS FOR LINEAR INTERPOLATION

This section analyses the accuracy and conservation of pointwise interpolation with the focus on
one-dimensional consistent interpolation with linear shape functions. Let hs and ht denote the
mesh sizes of the source and the target meshes, respectively. Let the piecewise source function
f be an approximation to an ‘exact’ function F , which is the limit of f as hs tends to 0 and
is typically unknown. For the sake of argument, assume that F has continuous and bounded
second derivative F ′′, and the source function f agrees with F at the source control points.
Let ĝ denote the solution for g obtained from consistent interpolation, i.e. ĝ = ∑

ĝ(ti )�i ,
where ĝ(ti ) = f (ti ). Although one can analyse the error in ĝ − f directly [34], it is more
convenient to start by analysing ĝ − F .

Assuming F ′′ is continuous and bounded, the following bounds on f − F are shown in
Section 1.6 of Reference [21]:

‖f − F‖∞ � 1
8 h2

s‖F ′′‖∞ (A1)

‖f − F‖2 � 1

�2 h2
s‖F ′′‖2 (A2)

Using an argument similar to that in Reference [21], the following bounds on ĝ − F can be
obtained.

Lemma A.1
If F ′′ is continuous and bounded, then

(a) ‖ĝ − F‖∞ � 1
8 (h2

s + h2
t )‖F ′′‖∞;

(b) ‖ĝ − F‖2 � 1/�2h2
t ‖F ′′‖2 + ‖1‖2/8h2

s‖F ′′‖∞, where ‖1‖2 ≡ ∫
� 1 dx.

Proof
(a) Let �(x) be shorthand for F(x) − ĝ(x), and [a, b] be a typical interval of the target
mesh. Now consider �(x) over [a, b]. Note that �(x) reaches its maximum at either x = a,
x = b, or x = c where �′(c) = 0. For the former two cases, ĝ(a) = f (a) and ĝ(b) = f (b),
and hence the error is bounded by 1

8 h2
s‖F ′′‖∞ � 1

8 (h2
s + h2

t )‖F ′′‖∞. For the latter, suppose
c − a �ht/2 � b − c. Expanding � in a Taylor series about a,

�(a) = �(c) + (c − a)�′(c) + 1
2 (c − a)2�′′(w)
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where a < w < c. Since �(a) � 1
8 h2

s‖F ′′‖∞, �′(c) = 0, and �′′(x) = F ′′(x) − g′′
I (x) = F ′′(x),

this then leads to

|�(c)| � 1
2 (c − a)2�′′(w) + 1

8 h2
s‖F ′′‖∞ � 1

8 (h2
s + h2

t )‖F ′′‖∞

(b) Consider the function

�(x) ≡ �(x) − x − a

b − a
�(b) − b − x

b − a
�(a)

which vanishes at both a and b. For simplicity, suppose a = 0 and b = ht , and �(x) can be
represented as a Fourier sine series:

�(x) =
∞∑

n=1
an sin

n�x

ht

By direct computation,

∫ ht

0
�2 dx = ht

2

∑
a2
n

∫ ht

0
(�′′)2 dx = ht

2

∑ (
n�

ht

)4

a2
n

Since

a2
n � h4

t

�4

(
n�

ht

)4

a2
n

for n � 1, summing on n,

∫ ht

0
�2 dx � h4

t

�4

∫ ht

0
(�′′)2 dx = h4

t

�4

∫ ht

0
(F ′′)2 dx

This inequality holds for other intervals as well. Summing over all the intervals leads to

∫
�

�2 dx � h4
t

�4

∫
�
(F ′′)2 dx

Because ∣∣∣∣x − a

b − a
�(b) + b − x

b − a
�(a)

∣∣∣∣ � max{|�(b)|, |�(a)|} � ‖f − F‖∞

‖�‖2 � ‖�‖2 +
∣∣∣∣
∣∣∣∣x − a

b − a
�(b) + b − x

b − a
�(a)

∣∣∣∣
∣∣∣∣
2

� 1

�2 h2
t ‖F ′′‖2 + ‖1‖2

8
h2

s‖F ′′‖∞ �
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Now, it is then obvious that

‖ĝ − f ‖∞ �
( 1

4 h2
s + 1

8h2
t

) ‖F ′′‖∞ = O(h2
s + h2

t ) (A3)

‖ĝ − f ‖2 � 1

�2 (h2
s + h2

t )‖F ′′‖2 + ‖1‖2

8
h2

s‖F ′′‖∞ = O(h2
s + h2

t ) (A4)

These bounds are tight asymptotically, because if one of the meshes is fixed while the other
is infinitely refined, the error is bounded by that of the fixed mesh, which is of second order.
The error in the conservation measure is∫

�
(ĝ − f ) dx � ‖ĝ − f ‖1 � ‖1‖2‖ĝ − f ‖2 = O(h2

s + h2
t ) (A5)

which is also of second order. Therefore, linear interpolation is consistently conservative, mean-
ing that the error in the conservation measure goes to zero as hs and ht tend to zero. For
alternative interpolation schemes, the error terms involving hs are of higher order, but that
involving ht will stay the same. If F has discontinuities, the above analyses break down, and
the accuracy will in general be of lower order, unless the discontinuities coincide with the
source and target nodes.

APPENDIX B: SINGULARITIES DUE TO INEXACT QUADRATURE

Suppose the target mesh is a uniform 1-D grid. If the two-point Gaussian quadrature rule (of
degree 3) is used, the element mass matrix is computed exactly

h

6

[
2 1

1 2

]

where h is the interval length of the target grid. If the one-point Gaussian quadrature rule (of
degree 1) is used, the element mass matrix becomes

h

4

[
1 1

1 1

]

which is singular. The global mass matrix assembled from these 2 × 2 element matrices is also
singular.

Singular matrices can also occur when using the two-point rule for 1-D grids with quadratic
basis functions or when using the one-point rule for 2-D triangular meshes.

APPENDIX C: CONSERVATION OF VIRTUAL WORK

In fluid–solid interaction, displacement u is transferred from solid to fluid, and pressure p is
transferred from fluid to solid. Provided that the basis functions for u and p are the same,
conservation of virtual work is achieved if L2 minimization is used to transfer u and p. Note
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that load (traction) transfer satisfies∫
�

p(s)�(s)
i dx =

∫
�

p(f )�(s)
i dx

where f (s) and f (f ) denote a function f on the solid and fluid meshes, respectively. Then∫
�

p(s)u(s) dx = ∑
i

∫
�

p(s)�(s)
i dx u

(s)
i = ∑

i

∫
�

p(f )�(s)
i dx u

(s)
i =

∫
�

p(f )u(s) dx

On the other hand, motion (displacement) transfer satisfies∫
�

u(f )�(f )
i dx =

∫
�

u(s)�(f )
i dx

and then ∫
�

p(f )u(f ) dx = ∑
i

∫
�

�(f )
i u(f ) dx p

(f )
i = ∑

i

∫
�

�(f )
i u(s) dx p

(f )
i =

∫
�

p(f )u(s) dx

It then follows that ∫
�

p(s)u(s) dx =
∫

�
p(f )u(f ) dx
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