
1 Introduction

This document outlines an approach for a conservative remap of mass, linear momentum
and internal energy. The description follows closely that of Jaio and Heath [1] and Farrell
and Maddison [2] where a conservative interpolation is achieved using a Galerkin projec-
tion approach. Details of the algorithms described in those manuscripts differ mostly in the
way element intersections are found but the mathematical foundations are the same. An-
other implementation of mesh-mesh intersections is the library r3d [3] and supports general
polyhedral intersections. r3d is being used at Los Alamos for several remap code projects.

Begin by noting the variables that need to be remapped in ALEXA. These include internal
energy, e, velocity, v and density ρ. In the current formulation both internal energy and
density are element-centered variables while velocity is node-centered. These require slightly
different treatments as outlined below. Note that as more physics are included in ALEXA
additional element centered data will need to be remapped/transferred. It is anticipated
that the only nodal quantity needing remap is velocity (in the guise of momentum transfer).
These centerings assume a staggered arrangement of kinematic and thermodynamic data
which is in line with the current element choice. Other element types may change data
centerings but a node and element centered remap sufficient for now.

Finally, note that the element for magnetics will require edge and face variable remap.
This is an area of on-going research and beyond the scope of the current document.

2 Algorithm

Following [1, 2] define a region of space with a donor field, p, and a target field, g and note
that the regions are assumed to share a boundary. A weighted-residual formulation can be
used to minimize the L2 norm of the error between two fields,∫

Ω
wgdV =

∫
Ω
wpdV ∀w. (1)

In the approximate space it is assumed that donor region is approximated with a mesh,
TD, discretized with ND basis functions φI , such that the discrete representation of the donor
field is,

ph(x) =
ND∑
I

pIφI(x). (2)

The target region mesh, TT , is defined similarly so that a field on it may be discretized as,

gh(x) =
NT∑
I

gIϕI(x) (3)

where NT are the number of bases, ϕI , in TT . As noted above the donor and target regions
are assumed to share the same boundary and an identical discretization of this boundary for
donor and target meshes.

The discrete form of Eqn. (1) can be formed by approximating the weighting function
with the target fields basis such that,∑

J

∫
Ω
ϕIϕJdV gJ =

∑
K

∫
Ω
ϕIφKdV pK . (4)
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or,
Mg = f (5)

where,

M =
∫

Ω
ϕϕϕϕϕϕtdV (6)

f =
∫

Ω
ϕϕϕφφφtpdV (7)

which is easily solved for the vector of target mesh field values, g, as the mass matrix, M,
is symmetric positive definite. Note that when integrated properly (more on this later),
Eqn. (4), conserves (globally) the volume integrated p (cf. [2, 1, 4]). As an aside, both
the consistent mass matrix, M, above and the lumped (diagonalized) matrix, ML, yield
conservative results (cf. [2]) with ML being simpler to invert but more diffusive. A convex
combination of these might be used to produce something akin to a FCT (flux corrected
transport) algorithm to provide necessary field variable limiting [5], but this is beyond the
scope of this report.

3 Approximations

Eqns. (6—7) require some form of numerical integration. Quadrature of the mass matrix,
M, presents no special challenges and can be evaluated as an integral over the target mesh
region element-by-element as,

Me =
∫

Ωe

NNtdV (8)

(9)

where N is the restriction of the global basis functions ϕ to the target mesh element, e. The
global element matrix is then assembled in the usual way M = AeMe.

Evaluation of f (and in particular its integration) requires considerably more care to
preserve conservation and solution accuracy. Several approaches to evaluating the integral
associated with the forcing vector have been assessed in the literature and include i) donor-
mesh integration, ii) target-mesh integration and iii) common-mesh-refinement (also called
supermesh approach). These approaches are outlined as follows.

Donor-mesh discretization evaluates f on the donor mesh, TD while the mass matrix is
integrated as indicated above on the target-mesh, TT [6]. This scheme is sensitive to relative
mesh resolution, is zero-th order accurate if the meshes are refined simultaneously (error
does not converge with mesh refinement) and can cause high-frequency oscillations [1].

Target-mesh discretization evaluates f by integrating Eqn. (7) on the target mesh and is
one of the older approaches [7]. The advantage of this method is that it is straight-forward to
implement, is exact for linear functions and is less oscillatory than the source-based approach
[1]. Unfortunately the method is not conservative and so not applicable here.

The common-mesh-refinement (see also, supermesh construction) approach was devel-
oped to properly integrate the system in Eqns. (6—7) in order to preserve the conservative
properties of the continuous Galerkin Projection of Eqn. (1). As before, the mass matrix
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can be properly integrated on the target mesh. In the common-mesh-refinement approach,
however, the forcing vector, f , is integrated over (a tessellation of) the polygons created by
intersecting the target are donor meshes. This “common-mesh” is required to accurately in-
tegrate the product of the donor and target basis functions. More precisely, the donor basis
functions are continuous on the donor mesh while they are only C0 continuous on the target
mesh. The inverse is true for the target basis functions. However, on the intersected polygon
both target and donor basis functions are continuous with their product being quadratic.
Hence a quadrature rule of degree 2 integrates them exactly.

4 Field Data Transfer

Density, ρ, and internal energy, e, are constant over an element. Hence, transfer of these
quantities may be performed using Eqns. (6—7) assuming ϕ and φ are one on the element
and zero elsewhere. A key point is that both density and internal energy should be transferred
per unit volume (rather than per unit mass). While ρ is already mass per unit volume we
may use the equations directly. Transfer of internal energy, however, should be performed
as the transfer of ρe. Internal energy per unit mass is recovered once ρe is computed on the
target mesh by dividing by target ρ, element-by-element.

Velocity, v, is transferred as momentum once the density has been transferred. Specifi-
cally we compute the mass and forcing terms as,

∑
J

∫
Ω
ρTϕIϕJdV gJ =

∑
K

∫
Ω
ρDϕIφKdV pK . (10)

where ρD and ρT are the donor and target densities, pK is the (nodal) velocity on the donor
mesh and gJ is the solution vector for the velocity on the target mesh. Obviously, the mass
matrix and forcing vector now incorporate a density field as,

M =
∫

Ω
ρTϕϕϕϕϕϕ

tdV (11)

f =
∫

Ω
ρDϕϕϕφφφ

tdV ppp (12)

As indicated earlier, M is integrated over the target mesh while f uses the common-mesh-
refinement for quadrature.

5 Approaches to Limiting

The Galerkin projection approach is conservative when the forcing term is integrated properly
as described above. Another issue, however, is that data transfer may result in oscillatory
target mesh solution when the source and target bases are of higher-order than element-wise
constant. This can be particularly harmful for fields that have inherent physical limits (e.g.
ρ ≥ 0) as there are no constraints introduced in the galerkin projection that can prevent
this behavior. Oscillations are also dangerous as they can cause instabilities in non-linear
problems (e.g. shock mechanics).
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6 Higher-order Approximations

The accuracy of the transfer operation can be increased by increasing the order of approx-
imation of the source field data. For example, if density is represented as a constant over
the source mesh then the Galerkin projection will only be first-order accurate (also known
as donor method). Higher-order accuracy can be achieve by constructing a patch of ele-
ments around the element of interest (home element) and generating a mean-preserving,
least-squares-reconstruction of the field on this element. Note that these reconstructions
are discontinuous at element faces. The Galerkin projection approach outlined above still
applies but with a modified f . Note that the mass matrix, M, remains unchanged as the
target field is unchanged from the standard approach. Limiting approaches described above
are generally required as described in § 5.
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