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Abstract

A number of computational procedures employ multiple grids on which solutions are computed. For example, in multi-physics

simulations a primary grid may be used to compute mechanical deformation of an object while a secondary grid is used for thermal

conduction calculations. When modeling coupled thermo-mechanical effects, solution data must be interpolated back and forth

between the grids each timestep. On a parallel machine, this grid transfer operation can be challenging if the two grids are

decomposed across processors differently for reasons of computational efficiency. If the grids move or adapt separately, the

complexity of the operation is compounded. In this paper, we describe two grid transfer algorithms suitable for massively parallel

simulations which use multiple grids. They use a rendezvous technique wherein a third decomposition is used to search for elements

in one grid that contain nodal points of the other. This has the advantage of enabling the grid transfer operation to be load-balanced

separately from the remainder of the computations. The algorithms are designed for use within the multi-physics code SIERRA, an

object-oriented framework developed at Sandia. Performance and scalability results are given for the grid transfer operation running

on up to 1024 processors of two large parallel machines, the Intel Tflops (ASCI Red) and DEC-Alpha CPlant cluster.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple meshes arise in several kinds of continuum
calculations when grids are used to discretize partial
differential equations. Examples include the following:

* Iterative linear solvers such as multigrid accelerate
convergence by alternating between coarse and fine
mesh approximations within a multilevel solution
strategy.

* Adaptive mesh codes maintain a tree-like data
structure of parent and children elements to expedite
refinement or coarsening.

* Codes that solve for multiple physical quantities may
use separate grids to solve the appropriate equations
for each variable. Consider a machine part that
consists of a steel plate with two drilled holes. One
hole is a heat sink or source; the other is a location
where mechanical stress is applied. As shown in Fig. 1
for a 2d representation, the part is gridded with a
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high-resolution mesh around the smaller hole to solve
the heat equation for thermal conduction while a
second mesh with fine resolution around the larger
hole is used for the stress/strain mechanics solution.
A coupled thermo-mechanical solution is computed
by interpolating data back and forth between the two
grids. As the simulation progresses, one or both of
the meshes may be further adapted to adequately
resolve the variables of interest.

* Some operations are more efficient on structured
grids, such as radiation transport sweeps or fast
Fourier transforms (FFTs). However, complex geo-
metries are better fitted with unstructured grids. In
some simulations, both kinds of grids are used during
the course of a computation.

* Two different objects may be meshed independently
and joined at an interface within a coupled simula-
tion. For 3d objects this creates a 2d interface
containing nodal points from both meshes. Solution
data from both objects are transferred from one mesh
to the other within the interface region during each
timestep of the simulation.
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Fig. 1. Two meshes for a 2d plate, each with fine resolution around a

different hole.
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In all of these settings, solutions on one mesh must be
accurately interpolated and transferred to the second
mesh for the calculation to proceed. We term this a
‘‘grid transfer’’ operation. In the multigrid and adaptive
mesh examples, this is a well-studied problem on parallel
machines, where the hierarchical nature of the coarse
and fine grids can be exploited for this purpose [3,21,22].
However, in the latter three cases where multiple
independent grids are used, the grid transfer operation
is complex in a different way. It involves a search for
which element of the first mesh contains each nodal
point of the second mesh, and a subsequent interpola-
tion. If the two meshes move relative to each other, or if
one or both of them adapt independently, then the
search operation must be repeatedly invoked.
Now consider implementation of the multi-physics

example of Fig. 1 on a distributed-memory parallel
machine. A typical timestep consists of computing a
solution on the first mesh, interpolating the result to the
second mesh, computing a solution on the second mesh,
and interpolating it back to the first mesh. We expect the
two grid-based computations (finite element or differ-
ence or volume) to dominate the run time. Thus for
optimal performance, each mesh computation should be
independently load-balanced across all processors. Grid
partitioning is a well-studied problem; the optimal
solution for a parallel machine is one that balances the
number of elements on each processor while minimizing
the interprocessor communication needed between
connected elements. Packages such as Chaco [9] and
METIS [13] typically use graph-based algorithms for
computing good partitions.
If the two meshes are partitioned independently, there

is no assurance that the portions of the two meshes
owned by an individual processor will overlap spatially.
This is obvious if the two grids themselves only partially
overlap, e.g. at the interface between two materials. But
it is also true if two meshes of differing resolutions are
used to grid the same physical object, as in Fig. 1. It can
also be true if the two meshes are initially identical, but
adapt over time due to different physical criteria. For
example, mechanical deformation could cause grid
refinement in one region of the first mesh, while local
hot spots could cause the second thermal mesh to refine
elsewhere. Insisting that a processor own the portion of
both meshes that overlays the same geometric region
would obviate the need for a parallel grid transfer
operation, but would result in load imbalance or extra
communication in one or both of the computational
phases. As we discuss in more detail below, multi-
constraint partitioning techniques [17,18] can, in prin-
ciple, be used to reduce these imbalance and commu-
nication costs, but have their own shortcomings. By
contrast, the algorithms we propose here allow each grid
to be decomposed independently and optimally, while
incurring the (hopefully small) overhead of the grid
transfer operation itself.
In the structured/unstructured grid case, non-over-

lapping partitions may also be required for good
performance. For example, multi-dimensional FFTs
are typically performed in parallel by having processors
own entire dimensions of a structured mesh (columns or
planes of a 3d mesh), so that library routines for fast 1d
FFTs can be invoked. If an irregular grid is overlayed
with a 3d regular FFT grid, the volume spanned by a
processor’s FFT columns will not (in general) coincide
with the volume of the graph-based partition it owns in
the irregular grid.
These issues are the source of algorithmic com-

plexity for general grid transfer operations on a dis-
tributed-memory parallel machine. For each of the
nodal points it owns in one mesh, how does a processor
determine which element in the other mesh contains that
node, and what processor owns that element? To what
other processor(s) should a processor send its inter-
polated quantities? Since the resulting pattern of data
transfer is irregular and dynamic (if the grids are moving
or adapting), how can the communication of grid
geometry and interpolated solutions be performed
optimally?
Other researchers have addressed some of these issues

in different settings. For example, parallel fluid flow
calculations often employ overset grids [1,2,23], which
are a collection of distinct body-fitted grids that overlap
in arbitrary ways. The individual grids are typically
topologically regular, only move by bulk translation or
rotation relative to each other, and usually have only
small regions of overlap. All of these restrictions
simplify the search operation relative to the more
general problem we are addressing here.
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In [16] the manipulation of distributed data on
multiple grids is addressed. The PILGRIM library is
presented, developed for unstructured grid applications
and motivated by data sets arising in the earth sciences.
PILGRIM assumes that a grid’s decomposition across
multiple processors is globally known, so that each
processor knows which processor owns every grid cell.
This limits the sizes of grids that can be arbitrarily
decomposed and is an assumption we do not make.
PILGRIM also represents data dependencies between
two grids (e.g. for interpolation purposes) as a sparse
matrix and enables the interpolation to be efficiently
performed in parallel once a matrix is known. However,
it includes no algorithms for creating the data depen-
dence matrix efficiently. By contrast, our grid transfer
algorithms are designed to quickly compute these data
dependencies in parallel and perform the associated
interpolation, though we never explicitly form such a
matrix.
A different approach to the problem of parallelizing

multi-physics simulations is the multi-constraint parti-
titioning model of Schloegel et al. [17,18]. Their goal is
to find a single partitioning of the union of grids such
that each computation is load balanced. When success-
ful, this approach would not require grid transfer
operations. However, for many of the applications of
interest to us, this technique is not readily applicable.
For instance, if the two meshes are independent, and
related only geometrically, then they cannot be easily
combined into a single graph partitioning problem. We
are also interested in combining mesh and particle
methods, and particle interactions are most naturally
described geometrically, not with a mesh or graph. Also,
multi-constraint partitioning problems tend to be hard
to solve, and so the resulting single partition will be of
lower quality than those achieved by standard partitions
of two independent problems; the parallel multi-physics
models themselves will thus run slower.
The new algorithms we propose address the general

problem of transferring data between two (possibly)
unrelated grids with arbitrary overlap. An early version
of one of the algorithms was presented at the SC98
conference [15]. In the next section, we outline the steps
of our parallel algorithms. In Section 3, we discuss their
implementation and give performance and scalability
results on two parallel machines, the Intel Tflops (ASCI
Red) and a DEC-Alpha CPlant cluster. As we shall see,
the algorithms are fast enough to be used in a dynamic
simulation where one or both grids may move or adapt
each timestep.
B

2

Fig. 2. Arbitrary overlap of two meshes. Node A of the red mesh is

inside the blue mesh cell with corner points 1–4.
2. Algorithms

We begin with a precise definition of the grid transfer
operation. Assume we have a blue mesh consisting of
elements with one or more scalar or vector values
defined at its nodal points. We also have a red mesh of
elements and nodal points whose spatial extent overlaps
that of the blue mesh in some arbitrary way. The grid
transfer task is to interpolate from nodal values of the
blue mesh onto nodes of the red mesh. This requires first
finding the unique blue element that contains each red
nodal point, then using the solution data on the nodal
(corner) points of the blue element to interpolate new
solution values onto the red nodal point. If a red nodal
point lies on the face (or edge) between two (or more)
blue elements, it can be considered inside either element
for interpolation purposes. If a red nodal point is
outside the entire blue mesh, then it may be ignored or
an extrapolation procedure may be used. In this paper
we focus on grid points for which interpolation can be
performed.
The geometry of this problem is illustrated for a

simple 2d example in Fig. 2. Nodal point A of the red
mesh is inside the blue element with corner points 1–4.
The solution at nodal points 1–4 can be used to
interpolate an accurate solution at any location in that
blue element’s interior, such as point A. Red nodal point
B is outside the blue mesh’s domain so no interpolation
is possible.
As described in the introduction, on a parallel

machine, we allow for the blue and red grids to be
partitioned across processors in arbitrary and different
ways. We call these partitions the blue and red
decompositions, respectively. For general decomposi-
tions on a distributed-memory machine, a processor has
no global knowledge of what elements or nodes are
owned by other processors. Yet to perform a particular
interpolation, a processor must have information about
both a red node and the blue element that contains it.
Our solution to this problem is to have elements and
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Fig. 3. Recursive coordinate bisectioning of 30 points across 15

processors. The top-level cut is shown in red, the second-level in blue,

the 3rd in green, and the lowest-level in yellow.
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nodes ‘‘rendezvous’’ in a load-balanced way at specific
intermediary processors [11]. We construct a new
rendezvous decomposition so that processors in that
decomposition own both blue elements and red nodes in
the same geometric region of space. To populate this
third decomposition with data, processors determine
which rendezvous processor needs to be sent the data for
each blue element and red node. If each processor can
do this independently for the blue elements and red
nodes it owns, then no global knowledge of the blue or
red decompositions is required.
What properties do we require of the new rendezvous

decomposition? First, it should be geometrically based,
since the search for blue elements that contain red nodes
will take place in this decomposition. Second, it should
be fast to compute in parallel, since it may be re-
computed every timestep as the blue and red grids move
or adapt. The simple geometric partitioning algorithm
known as recursive coordinate bisectioning (RCB), first
proposed by Berger and Bokhari [4], meets both these
criteria. Its name comes from the use of cutting planes
normal to the x-, y-, or z-axis. The algorithm takes as
input the geometric locations of a set of objects
(elements or nodes in this case), determines in which
coordinate direction the set of objects is most elongated,
and then divides the objects in half by positioning a
cutting plane normal to that direction. The processors
are likewise split into two groups and each exchanges
data as needed with a partner processor in the other
group. The original set of points is now split into two
halves, each on a subset of processors, which can be
further divided by applying the same procedure recur-
sively. With minor modifications, RCB can be used to
divide a set of points into an arbitrary number of sets,
each containing an equal number of points. Fig. 3
illustrates a typical RCB partitioning for a 2d set of
points.
Although the partitions produced by RCB are not as

high quality as those generated by graph-based load-
balancing methods, RCB has been used successfully as a
parallel dynamic load balancer for a number of
applications including adaptive mesh calculations [12],
contact detection in crash simulations [14], and mole-
cular dynamics [19]. For the grid transfer problem, RCB
has several attractive properties [8]. As required above,
it is geometrically based and is fast to generate in
parallel; the key step is finding a median of a distributed
set of values. The resulting decomposition can be
compactly described as a set of ðP � 1Þ cutting planes,
where P is the number of processors. This means that
unlike the blue and red decompositions, where we
assumed a processor could not store information about
every other processor’s partition, for the rendezvous
decomposition each processor can easily store the set of
cuts that describe the entire decomposition. By stepping
through the cutting planes in log(P) stages, any
processor can quickly find which rendezvous processor
owns the sub-domain containing an arbitrary point.
With this background, we now describe our first

Algorithm A for performing a parallel grid transfer
operation. As will be discussed below, for load-
balancing reasons it is most suitable for meshes whose
grid cells are roughly uniform in size. The stages of
Algorithm A are listed in Fig. 4.
In step (1) we determine two bounding boxes that

contain the blue and red mesh respectively, and intersect
them. The resulting intersection box bounds the region
of overlap between the two meshes. This inexpensive
operation is unnecessary when the two meshes occupy
the same region of space. However, in some problems
the two meshes may overlap only slightly—e.g. two 3d
meshes which overlap at a 2d interface. This step then
serves to reduce the number of blue elements and red
nodes that need be considered in the remainder of the
grid transfer operation.
In step (2) we perform an RCB operation on the set of

blue mesh elements which are inside the intersection
bounding box defined in the previous step. This creates a
new rendezvous decomposition, in which each processor
owns a compact region of space containing equal
numbers of blue elements. The advantages of using this
third decomposition for searching rather than the blue
decomposition itself will become clear in the subsequent
steps.
In step (3), geometry information about each blue cell

is sent from the blue decomposition to the new owner of
that cell in the rendezvous decomposition. This is
typically a list of corner node coordinates which will
be needed for determining whether red nodal points lie
within a particular blue element. This information could
have been carried along with the blue element as it
migrated to a new processor during the RCB operation,
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Fig. 4. Algorithm A: Steps of a parallel grid transfer operation, exchanging data between three decompositions: blue, red, and rendezvous. This

algorithm is best for meshes whose grid cells are roughly uniform in size.
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but it is more efficient to represent the element as a
single point during RCB. In step (4), blue elements
which extend into neighboring processor’s RCB sub-
domains are identified and cloned. That is, all the
information for those elements is shared with the
appropriate neighbor processors. Each processor in the
rendezvous decomposition now has information for all
blue elements whose volumes have any overlap with its
RCB sub-domain.
In step (5), each processor computes which rendez-

vous processor’s RCB sub-domain contains each of its
red nodal points that lie inside the intersection bounding
box of step (1). As in step (4), this computation can be
done on-processor (without communication) by using
the stored information for the P � 1 cuts of the RCB
rendezvous decomposition. Information about these red
points is sent to the appropriate processors in the
rendezvous decomposition in step (6).
At this stage of the algorithm, a list of blue elements

and red nodal points contained within a rendezvous
processor’s RCB sub-domain has been communicated to
that processor. Step (7) determination of which element
contains each point is now a local search. Since it is
identical in form to a serial grid transfer operation,
existing serial search code with a variety of optimiza-
tions can be used. For example, the elements can be first
sorted into a data structure which makes the search for
each nodal point quicker. Once the search is completed,
in step (8) the list of red nodes inside a particular blue
element is sent back to the processor which owns the
element in the blue decomposition. That processor can
then perform the interpolation from blue corner nodes
to red nodal points in step (9). Finally, in step (10), the
red nodal solution data is sent directly to its final
destination in the red decomposition by the blue
decomposition processors which performed the inter-
polation.
In summary, the search and interpolation steps (7)

and (9), are on-processor computations for which
existing sequential code in the application can be used.
The operations of steps (1)–(6) serve to migrate blue
elements and red nodes that are close to each other to
the same processor so that the search can be computed
efficiently. We note that the chief benefit of using RCB
to create the rendezvous decomposition is it enables fast
and precise identification of which blue elements and red
nodal points occupy the same geometric region. If, as an
alternative, red points were sent directly to the blue
decomposition for searching, there would be no simple
way to identify which unique processor should receive
them. Simple bounding boxes around a processor’s
owned blue region could, in principle, be constructed for
this task, but the boxes would include (potentially quite
large) regions of mesh not owned by the processor, and
thus redundant communication and computation would
ensue.
We now address the issue of load balance in the grid

transfer operation. The computational steps (7) and (9)
of Algorithm A will be load balanced if the number of
red nodal points inside each blue element is roughly
constant across the overall geometry. This will insure
that each processor searches on the same number of
nodes and elements as other processors (step (7)), and
does the same number of interpolations as other
processors (step (9)). Geometrically, a variety of grid
pairs meet this criterion: two grids with the same
uniform spatial resolution, two grids with unequal but
uniform resolution (e.g. one coarse and one fine mesh),
or two grids with varying spatial resolution but which
both coarsen or refine together in the same geometric
regions. For all of these scenarios, Algorithm A is a
good choice.
However, consider a pair of grids as in Fig. 1. A

coarse grid cell near the large hole (upper mesh) will
contain a very large number of nodal points in the other
mesh. This will lead to imbalance in steps (7) and (9) of
Algorithm A. Some processor’s RCB sub-domain will
likely contain many coarse blue elements. It will then be
required to search for a disproportionately large number
of red nodal points. Similarly in the blue decomposition,
any processor that owns mostly coarse blue elements
will perform more than its share of interpolations. We
can alleviate this imbalance (at the cost of some
additional communication) by balancing the rendezvous
decomposition on blue cells and red nodes combined,
and by performing the interpolation in the rendezvous



ARTICLE IN PRESS
S.J. Plimpton et al. / J. Parallel Distrib. Comput. 64 (2004) 266–276 271
decomposition rather than in the blue decomposition.
These changes motivate Algorithm B of Fig. 5.
The key differences in Algorithm B versus A are as

follows. In step (2), the RCB decomposition is created
using both blue elements and red nodal points together.
The appropriate elements and nodes can then be sent
directly to the appropriate RCB processor in steps (3)
and (5). The search step (6) is often better balanced than
before since each processor will own the same total
number of elements plus nodes within the RCB
decomposition. Some processors may own many ele-
ments and few nodes, and some vice versa. The binning
search algorithm we describe in the next section scales
roughly linearly (for typical grids) in both the number of
elements and the number of nodes, so this preserves
overall balance.
In step (8), the interpolation from blue elements to red

nodes is now performed within the RCB decomposition.
This requires additional physics quantities on the blue
nodal points to be sent from the blue decomposition to
the RCB processors in step (7). The final red node
results are then sent from the RCB processors to the red
decomposition in step (9). Again, this change can help
the interpolation step (8) be better balanced than in
Algorithm A. If the two grids contain roughly the same
number of elements (and nodes), then the distribution of
red nodes within the RCB decomposition is at most a
factor of two imbalanced in Algorithm B (a processor
owns all red nodes and no blue cells). By contrast, in
Algorithm A, a processor in the blue decomposition
could end up doing interpolations for an arbitrarily
large number of red nodes.
In summary, Algorithm B is a better choice than A for

grid pairs where the mesh resolution varies within and
between the grids, e.g. when the two grids are adapted
due to different criteria. The additional cost incurred in
B to communicate and store blue grid physics quantities
means Algorithm A is a better choice otherwise. A few
additional comments concerning variants and details of
both algorithms are now in order:

* Nothing in the formulation of the two algorithms is
specific to the kind of grids being used. The blue and
red meshes can be 2d or 3d, composed of tetrahedra
or hexahedra, or a mixture of different element types.
Fig. 5. Algorithm B: Steps of a second parallel grid transfer operation. T
We only presume that for the search step it is possible
to write a function that can use an element’s
geometry to quickly determine if a point is inside it
or not.

* If the two meshes do not change their nodal positions
or topology (e.g. due to refinement) during the next
timestep, then the search portion of the two
algorithms need not be repeated, if the element/node
pairings are stored between timesteps. In Algorithm
A, steps (1)–(8) can then be skipped and only the
interpolation and communication of steps (9) and
(10) need be performed. In Algorithm B, steps (1)–(6)
can be skipped, and only steps (7)–(9) need be
performed. In the limit of two static meshes, the full
algorithm is executed only once as a pre-processing
step; just steps (9) and (10) in A or steps (7)–(9) in B
are executed every timestep for the remainder of the
simulation.

* As mentioned above, RCB is a commonly used
algorithm for dynamic load balancing [8]. If the blue
mesh were originally decomposed via RCB, then
steps (1)–(3) and (8) of Algorithm A could be
skipped, since the blue decomposition becomes the
rendezvous decomposition. No such savings is
possible in Algorithm B since its RCB decomposition
is performed on blue elements and red nodes
together.

* One particular communication operation occurs
repeatedly throughout the two algorithms. Often
each processor knows what data it wishes to send to
whom, but not which processors it will be receiving
data from nor how much data it will receive. We call
this an ‘‘inverse communication’’ operation and have
written optimized library routines to perform it.
Initially a communication ‘‘pattern’’ is constructed,
and the communication operation can then be
invoked with arbitrary data (e.g. element geometry
or solution vectors). To construct the pattern, each
processor first determines how many messages it will
receive. To do this, each processor constructs a vector
of length P with a value of 1 for processor indices that
the processor wants to send messages to, and zeros
otherwise. Summing these vectors over processors
(via an MPI Reduce scatter operation) enables each
processor to learn the number of messages it will
his algorithm is best for meshes with widely varying grid cell sizes.
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receive. Each processor then sends a brief message to
the other processors it has data for, containing the
amount of information it plans to send. In this way,
each processor learns how much data it will receive
from whom, and the subsequent irregular commu-
nication operations can be performed efficiently.

* Developing an accurate performance model of the
grid transfer algorithms is complicated by the
irregular nature of the communication operations,
but some asymptotic results are helpful. Let R be the
total number of red nodes and B the number of blue
cells. The search and interpolation steps are the
dominant on-processor computations. Both should
scale optimally as OððB þ RÞ=PÞ and OðR=PÞ;
respectively, on P processors, assuming the searches
can be performed in linear time (see the next section)
and the number of interpolations is roughly load
balanced across processors.
The cost of RCB construction in step (2) of the grid

transfer algorithms depends on the median finding
algorithm. We use a binary search procedure which,
if the points are not badly distributed, has a
computational cost of OðM � logðMÞ=PÞ; where
M ¼ B in Algorithm A and M ¼ B þ R in Algorithm
B. Applying this procedure recursively to successively
smaller data sets on successively fewer processors
leads to an overall computational cost for RCB that
is still OðM � logðMÞ=PÞ; with a communication cost
that is OðM � logðPÞ=PÞ: The cost in step (5) of
Algorithm A to determine the rendezvous processor
for each red node is OðR � logðPÞ=PÞ: In the other
communication steps, the total volume of data
communicated by all processors is proportional to
R þ B: However, depending on the problem size the
communication cost may be dominated by latency
instead of bandwidth. The number of messages, and
hence the latency cost, can depend in a complicated
way on the attributes of the initial red and blue
decompositions and their overlap.
3. Results

We have implemented both grid transfer algorithms
of the previous section using a collection of load
balancing and communication functions that can be
assembled in different ways [6,10]. Specifically, the
toolkit includes functions for creating RCB decomposi-
tions and finding points within them, and for setting up
and performing irregular communication in various
formats. The toolkit is written in standard C with MPI
library calls, but was designed using object-oriented
principles. This abstraction serves to isolate internal
data structures from the application, such as the storage
that encodes irregular communication patterns. The
toolkit allowed us to quickly experiment with alternative
formulations of the algorithms, such as the A and B
versions, as well as other variants. As discussed in [6,10],
the toolkit has proven useful in other settings besides
grid transfer.
The algorithms of this paper were designed to support

a multi-physics finite element code called SIERRA
[20,7], developed at Sandia. SIERRA is a Cþþ
computational mechanics framework that allows the
application developer to easily couple various physics
and material models with different solution techniques.
The SIERRA framework provides support for parallel
communications, data and mesh management, as well as
grid transfer operations.
We present two sets of benchmark timings here. The

first are for Algorithm A within a driver that uses
idealized grids to let us quickly test the algorithm’s
performance on a wide range of grid sizes. The second
set of results are for Algorithm B using true finite
element grids and the associated search and interpola-
tion functions they require. The latter results are similar
to what we expect for the eventual performance of grid
transfer operations within SIERRA using these algo-
rithms.
Results are given for two different parallel machines

at Sandia, one that is a traditional massively parallel
machine, the other a less tightly coupled cluster with
faster processors but a slower communication network.
The first is the Intel Tflops machine built with 333 MHz
Pentium processors and a proprietary communications
network that sustains processor-to-processor band-
widths of 310 Mbytes=s (in the limit of long messages)
with message latencies of 15 ms: The second machine is
a cluster known as CPlant [5] built with 500 MHz EV6
DEC Alpha processors interconnected via Myrinet. The
Myrinet network delivers roughly 100 Mbytes=s of
message bandwidth with latencies of about 60 ms: All
of these communication numbers represent what is
achieved from the MPI-level within a user application,
i.e. by timing MPI Send and MPI Receive calls.
To test Algorithm A, two independent 3d regular

hexahedral meshes were created with different grid
spacings. The first mesh was rotated relative to the other
so as to overlap it in an arbitrary fashion. The grid
transfer algorithm does not exploit (or even know) that
in this case individual grid cells are rectilinear (with one
exception noted below) or that the global grids are
topologically regular. Each processor is simply given a
list of individual cells and associated nodal points to
compute on. The rotation of the red mesh causes about
18% of its nodal points to fall outside the global
boundaries of the blue mesh. In Algorithm A, step (1)
effectively discards these red points. Since the discarded
points are not evenly distributed across processors, this
causes some load imbalance.
The global sizes of the blue and red meshes were equal

in each case and ranged from N ¼ 8000 to N ¼
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8; 192; 000 grid cells each. Initially the blue mesh was
broken into large 3d ‘‘bricks’’, with one brick assigned
to each processor, though in a different ordering than
the RCB rendezvous decomposition will assign them.
The red mesh was partitioned in a columnar fashion
with a columnar section assigned to each processor in a
quasi 2d decomposition. These choices of blue and red
decompositions insure that the typical data exchanges
between decompositions in the grid transfer operation
(red 2 rendezvous, blue 2 red) are irregular in nature
and require each processor to send its data to many
other processors. The blue 2 rendezvous exchanges
also entail irregular point-to-point communication, but
with each processor sending all its data to one other
processor, since both decompositions are brick-like.
In each of the following plots, pairs of curves are

shown. The first curve (circular data points) is the CPU
time in seconds to perform the full grid transfer
operation—steps (1)–(10) of Algorithm A of Fig. 4—
on both a scalar and a 3-vector quantity interpolated
from the blue to red mesh. We use a binning method for
the local on-processor search of step (7), which overlays
a processor’s RCB sub-domain with a 3d grid of bins,
assigns blue elements to multiple bins (if they are not
wholly contained in a single bin) and red nodal points to
unique bins, then checks within a bin to find which
element contains a particular red point. For typical grids
this procedure scales roughly linearly in the number of
elements and points. For this benchmark, the check for
a blue element containing a red point is done in a simple
way that exploits the fact that each blue hexahedral
element is a 3d box aligned with the coordinate axes.
The second curve in each plot (square data points) is the
CPU time for grid transfer during timesteps when the
grids do not move. Steps (1)–(8) of Algorithm A are
skipped; only steps (9) and (10) are performed using
search results stored from the earlier full invocation of
the algorithm.
Fig. 6 shows run times for a fixed-size problem with

64,000 blue elements (and 64,000 red nodal points) run
on 1–256 processors. The dotted lines indicate perfect
speed-up. On the Tflops machine the algorithm evi-
dences reasonable speed-up until about 128 processors
(500 elements/processor) when communication costs
begin to dominate. On the CPlant machine the roll-off
in performance happens much sooner; communication
costs are already a large fraction of the run-time on 8
processors. This is due to CPlant’s less favorable
compute/communication ratio versus Tflops; a single
CPlant processor runs this benchmark 2:5� faster than
a Tflops processor (the one-processor timings in Fig. 6),
but the CPlant communication network is slower.
Fig. 7 shows timings for a scaled-size problem run on

1–1024 processors of each parallel machine. The blue
and red meshes were successively doubled in different
dimensions as processors were added so that there were
always 8000 blue elements (and 8000 red nodes) per
processor. Thus on one processor there were 8000
elements in each global mesh; on 1024 processors each
of the two meshes contained over 8 million elements. On
this plot perfect scalability for the grid transfer
algorithm would thus be a horizontal line. For the full
algorithm (circles) the run time rises from about
0:220:75 s on Tflops and 0:121:4 s on CPlant. Since
the on-processor computations (search and interpola-
tion) scale nearly perfectly, the growth in total time is
due primarily to communication and to a lesser extent
on the logarithmic dependence of the RCB operation on
grid size and processor count. On the largest problems,
the communication steps move an immense volume of
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data between large numbers of processors in an irregular
pattern; the communication bandwidth of even the
Tflops network eventually saturates and the algorithm
runtime increases.
The lower curves (squares) in Fig. 7 are the time to

perform only the interpolation and solution commu-
nication on timesteps when the meshes do not move
relative to each other. Again there is a modest rise in
runtime on the largest problems, from 0.021 to 0:062 s/
timestep on Tflops and 0.0076–0:11 s/timestep on
CPlant, due to communication saturation. However,
the most important conclusion from these scaled-size
timings is that they indicate a grid transfer operation can
be performed quite rapidly for large meshes on both
tightly coupled massively parallel machines (like Tflops)
and on large commodity clusters (like CPlant).
Algorithm B of Fig. 5 was benchmarked on pairs of

finite element grids created for a regular parallelepiped
with two cylindrical holes, similar to a 3d version of Fig.
1, except that the two holes pierce different faces of the
3d block so as to be at right angles to each other. The
meshes were constructed with 8-node trilinear hexahe-
dral elements. As in the figure, each of the two meshes
was locally refined around a different hole. Three
different pairs of meshes were used in the benchmark-
ing—‘‘small’’, ‘‘medium’’, and ‘‘large’’—with about
18,000, 142,000 and 1.38 million elements in each mesh
of the pair. As a pre-processing step, each mesh was
decomposed independently using multilevel graph-based
partitioning options in the CHACO package [9], which
assigns each processor a compact sub-domain from each
mesh.
For these meshes, the search step (6) of Algorithm B

uses the same binning approach described above (with a
bin size set for the larger elements, so that some bins
contain a large number of small elements). The low-level
test for a red node inside a blue element inverts the finite
element shape functions for the blue element. Since these
functions contain higher-order monomial cross-terms,
this requires inversion of a small nonlinear system which
usually converges in a few Newton iterations. Likewise,
the interpolations of step (8) were performed using
trilinear finite element basis functions.
Fig. 8 shows grid transfer CPU times for the small,

medium, and large mesh pairs (blue, green, red data,
respectively) on various numbers of Tflops and CPlant
processors. The largest grid could not be run on fewer
than 16 processors due to memory requirements. These
are CPU times to perform two grid transfers, as would
be required each timestep in SIERRA in a coupled
thermo-mechanical or thermo-fluid simulation. In the
first transfer, a 3-vector (e.g. velocity) is transferred
from the blue mesh to the red; in the second a scalar (e.g.
temperature) is transferred from the red mesh to the
blue. As before, two sets of timing data are shown for
each case—the ‘‘full’’ time (circles) for steps (1)–(9) of
Algorithm B, and a ‘‘partial’’ time (squares) for only
steps (7)–(9).
These results indicate the grid transfer operation is

somewhat more expensive and less scalable than in the
previous plots. The chief reason for the additional
computational cost (about 2.5 times greater CPU time
per element per transfer on a single processor) is the
finite element shape and basis function manipulations
now required. Perfect scalability for these fixed-size
benchmarks is indicated by the dotted lines shown for
various curves in Fig. 8. The fall-off from perfect scaling
is similar to that in Figure 7 for Algorithm A, though
more pronounced. However once again, the bottom line
for the Algorithm B performance is that the grid transfer
operation can be done very quickly even for large grids.
Preliminary SIERRA timings indicate the full transfer
operation should be an order of magnitude or more less
expensive than the physics solutions computed on the
same meshes.
It is also worth noting that this benchmark is a

considerably more stringent test of the grid transfer
algorithm with respect to load balance than Fig. 6 case.
The size discrepancy (3d volume) between coarse and
fine grid cells in these paired grids is as large as a factor
of 500–1000, meaning that some blue cells contain
hundreds of red nodal points while others have none.
Algorithm B cannot completely compensate for this
imbalance (the factor of 2� discussed in Section 2) and
its extra communication overhead also affects scalabil-
ity.
Finally, we have compared the performance of

Algorithm A versus B on this two-grid problem. As
expected from the discussion in Section 2, Algorithm A
runs this benchmark less scalably than Algorithm B.
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The 1-processor timings are roughly the same for both
algorithms. But on 32 Tflops processors Algorithm A
performs 2 full transfers about 5:5� slower than
Algorithm B on the medium-sized grids (6.61 versus
1:19 s). Similarly on 64 CPlant processors, A runs 3:1�
slower than B for the same problem (2.34 versus 0:76 s).
These effects are magnified on more processors and
larger grid sizes.
In conclusion, these two sets of benchmark results

indicate that the parallel interpolation and transfer of
solution data between multiple grids can be performed
effectively on machines with 1000 s of processors using
our proposed algorithms. More importantly, the overall
time for the grid transfer operation is typically small
compared to the total computation time a production-
level application requires to solve PDEs on the same
grids, particularly on timesteps where the grids have not
changed. Our rendezvous-based approach balances the
work of grid transfer independent of the decomposi-
tion(s) used by the application for its multiple grids.
Thus, it allows the application the freedom to optimize
its partitioning and solution strategies as needed for
each stage of a coupled multi-physics computation.
Finally, by writing routines that perform the low-level
communication and load-balancing operations needed
for grid transfer in a portable and object-oriented style,
we have created a toolkit that has proven useful for
quickly experimenting with several variants of our grid
transfer algorithms as well as for other applications that
require irregular communication.
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