
First Common Refinement Implementation

Dan Ibanez

August 18, 2016

Abstract

This document describes how we converted the R3D library for Alexa
use, implemented common refinement transfer for element density, made
a correction for the case when boundaries change, and explains challenges
to implementing momentum-conserving velocity remap.

1 Modifications to R3D

The R3D library by Devon Powell at Los Alamos (https://github.com/devonmpowell/
r3d) provides the following operations:

1. “clip”: intersect a polyhedron with a half-space, equivalent to clipping it
by a plane.

2. “reduce”: integrate a polynomial of arbitrary order over a polyhedron.

Since tetrahedra are polyhedra that can be described as the intersection of
four half-spaces, the “clip” operation can be repeated four times to implement
the intersection of two tetrahedra.

The output of the “reduce” function is an array of moments, which as I
understand it are each some integral:∫

V

xpyqzr dV (1)

They can be multiplied by polynomial coefficients to get the final integral
value, for example:

∫
Ω

a0 +a1x+a2y+a3z dV = a0

∫
Ω

1 dV +a1

∫
Ω

x dV +a2

∫
Ω

y dV +a3

∫
Ω

z dV

(2)
The original implementation also has the following key benefits:

1. polyedra are stored in fixed-size arrays (this allows us to use functional
programming which assists optimization)

1

https://github.com/devonmpowell/r3d
https://github.com/devonmpowell/r3d


2. none of the code dynamically allocates memory (this is required for exe-
cution on GPUs and performance on CPUs)

3. the intersection of two tetrahedra can be performed in under 10 microsec-
onds on a typical CPU.

4. the code is small enough to enable the transformations we made to it

We copied it into Omega h because it needed a few key transformations to
fit our needs:

1. use the C++11 language instead of C (this is just for easy compatibil-
ity with the rest of Alexa and Omega h, and to remove certain GPU-
incompatible function calls like “memset”).

2. annotate the functions with KOKKOS INLINE FUNCTION so they can
run on GPUs.

3. put all code in one header file (this allows it to be called on a GPU without
using Relocatable Device Code)

2 R3D Transfer of Element Scalar

First, recall the linear system described in the remap document:∑
J

∫
Ω

ϕIϕJ dV gJ =
∑
K

∫
Ω

ϕIφK dV pK (3)

Where ϕ are target basis functions and φ are donor basis functions, and
Ω is the cavity region, which is assumed to remain constant. In the piecewise
constant case, both ϕ and φ are one in their element and zero elsewhere. Since
target elements do not overlap each other, we have that:∫

Ω

ϕIϕJ dV =

{
V (ΩI) I = J
0 I 6= J

(4)

Where V (ΩI) is the volume of target element I. Target and donor elements
do overlap, so on the right hand side we have:∫

Ω

ϕIφK dV = V (ΩI ∩ ΩK) (5)

This turns Equation 3 into simply:

V (ΩI)gI =
∑
K

(V (ΩI ∩ ΩK)pK) (6)

Equation 6 represents the scheme now implemented in Omega h version
2.2.0. It will also operate on vector and tensor fields, by treating each component
of the vector/tensor as a scalar field and transferring that.

2



3 Changing Cavity Boundaries

Edge collapses on curved boundaries (which are implemented and are indis-
pensable) have the potential to create target and donor cavities with different
regions. This breaks the original description of conservation which assumes they
have the same region Ω: ∫

Ω

g dV =

∫
Ω

pdV (7)

I think what we would want is that the integral over the target cavity equals
the integral over the donor cavity:∫

ΩT

g dV =

∫
ΩD

p dV (8)

Back in Equation 3, the weighting function w was discretized over the target
cavity. It now becomes unclear how to discretize the weighting function. In 3D
there exists a case where neither cavity is a strict superset of the other.

Note that the previous Omega h scheme for element density, although com-
pletely diffusive, does keep conservation when the boundary changed.

3.1 Correction for Scalars in Superset Case

Equation 6 suggests a way to deal with this in that it shows we are essentially
dealing with sums of intersection volumes. I implemented a correction in case
there is a portion of the target element I which is not intersected by donor ele-
ments, in which case we only divide by the portion that does have intersections:

(∑
K

V (ΩI ∩ ΩK)

)
gI =

∑
K

(V (ΩI ∩ ΩK)pK) (9)

Setting p = 1 and g = 1 in Equation 6 shows this is equivalent if the
boundary doesn’t change. I can think of going one step further and accounting
for portions of a donor element which don’t intersect the target mesh, which
gives:

(∑
K

V (ΩI ∩ ΩK)

)
gI =

∑
K

(
V (ΩI ∩ ΩK)

pKV (ΩK)∑
J V (ΩJ ∩ ΩK)

)
(10)

Where J , like I, iterates over the target cavity. I have not yet implemented
this second correction factor. Also, this only works for piecewise constant ele-
ment density and the generalization to the nodal velocity case is unclear.

3



4 Issues with Nodal Cavity Conservation

Even without cavity boundaries changing, there are some more important diffi-
culties for the transfer of the nodal velocity field in such a way that momentum
is conserved.

If one treats the cavity as an isolated mesh then the values assigned to cavity
boundary nodes could break momentum conservation in elements outside of but
adjacent to the cavity.

The current proposed solution is to consider two levels of elements, the first
layer being the original cavity, and to impose a condition that the nodes at
the two-layer boundary don’t change value. If said nodes are removed from the
explicit degrees of freedom, we get the same linear system as before except the
right hand side has additional terms enforcing momentum conservation of the
second-layer elements. If so then the existence and uniqueness of a solution
should not be affected. The above claims need to be double-checked before
proceeding.

Assuming these claims are true, however, it still means we would be proceed-
ing with two-layer cavities. This implies a number of technical complications
for Omega h and considerable coding effort, but so far no open unanswered
questions. In particular, independent set selection would need to proceed with
two-layer ghosting, the conflict graph would be a 4th order adjacency instead
of the current 2nd order adjacency, and a ghost layer must be re-formed after
independent set selection. That last item implies more trouble having to do
with ordering and maintaining the relationship between the two meshes, but
hopefully this can be sorted out. Adding this two-layer support will be my next
work item in the area of solution transfer.

Note that although two layers are required for coarsening and swapping due
to the lack of cavity-interior nodes, we could technically use a single layer for
refinement and force all momentum conservation to be satisfied by the single
central node. However, if this causes the central node value to spike then we
may consider two layers for refinement as well.

4


	Modifications to R3D
	R3D Transfer of Element Scalar
	Changing Cavity Boundaries
	Correction for Scalars in Superset Case

	Issues with Nodal Cavity Conservation

