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1 First Principles

Ultimately, what we want to do is conserve the integral of momentum over the
domain Ω of a cavity. The momentum is defined as the volume integral of
the product of velocity and density, and we have some change happening that
will alter both fields. The donor fields are those before the change, and the
target fields are those after the change. Thus our highest-level objective is the
following: ∫

Ω

ρT g dV =

∫
Ω

ρDp dV (1)

Ω cavity domain
ρT target density field
ρD donor density field
g target velocity field
p donor velocity field

Then, in order to control the distribution of momentum throughout the
domain, we can use a weighted residual formulation. By the time it gets dis-
cretized, this weighted residual will enforce an L2 minimization of the difference
between the momentum fields.

∀w ∈ H1
0 :

∫
Ω

wρT g dV =

∫
Ω

wρDp dV (2)

w weighting function
H1

0 space of all weighting functions

We also assume that ρT has been given by a prior process, so our goal is to
find vT ∈ H1

T such that Equation 2 is satisfied. We define the function spaces
H1

T and H1
0 in order to also satisfy Dirichlet boundary conditions on velocity

over the whole cavity boundary:

(g ∈ H1
T ) → (∀x ∈ ∂Ω : g(x) = c(x)) (3)

(w ∈ H1
0 ) → (w ∈ H1

T , ∀x ∈ ∂Ω : w(x) = 0) (4)
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Figure 1: Cavity with buffer layer and associated notation

c Dirichlet velocity condition given over ∂Ω

2 Discretization

We now discretize the problem by requiring all functions involved to belong to
one of six spaces, which are further restricted from their earlier descriptions.
Please see Figure 1 for an illustration of the different sets of nodes.

(w ∈ H1
0 ) =

∑
I∈NT

wIϕI

(g ∈ H1
T ) =

∑
I∈NT

gIϕI +
∑

I∈NF

c(xI)ϕI

(ρT ∈ H0
T ) =

∑
e∈ET

ρTeϑe

(p ∈ H1
D) =

∑
I∈ND

pIφI +
∑

I∈NF

c(xI)φI

(ρD ∈ H0
D) =

∑
e∈ED

ρDeθe

(5)
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NT set of interior target nodes
ND set of interior donor nodes
NF set of fixed nodes
ET set of target elements
ED set of donor elements
ϕI target basis function of node I
φI donor basis function of node I
ϑe target basis function of element e
θe donor basis function of element e
gI target velocity value of node I
ρTe target density value of element e
xI location of node I

Applying these discretizations to Equation 2 yields the following:

∀w ∈ H1
0 :

∫
Ω

(( ∑
I∈NT

wIϕI

)(∑
e∈ET

ρTeϑe

)
( ∑

I∈NT

gIϕI +
∑

I∈NF

c(xI)ϕI

)
dV

)
=

∫
Ω

(( ∑
I∈NT

wIϕI

)( ∑
e∈ED

ρDeθe

)
( ∑

I∈ND

pIφI +
∑

I∈NF

c(xI)φI

)
dV

)
(6)

We can move the sum over weighting degrees of freedom out of the integrals:

∀w ∈ H1
0 :

∑
I∈NT

wI

∫
Ω

(
(ϕI)

(∑
e∈ET

ρTeϑe

)
( ∑

I∈NT

gIϕI +
∑

I∈NF

c(xI)ϕI

)
dV

)
=

∑
I∈NT

wI

∫
Ω

(
(ϕI)

( ∑
e∈ED

ρDeθe

)
( ∑

I∈ND

pIφI +
∑

I∈NF

c(xI)φI

)
dV

)
(7)

Then choose a set of |NT | weighting functions such that each one sets wI =
δIJ for a different node J . The result is |NT | equations for the unknowns gJ :
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∀I ∈ NT :

∫
Ω

(
ϕI

(∑
e∈ET

ρTeϑe

)
( ∑

J∈NT

gJϕJ +
∑

J∈NF

c(xJ)ϕJ

)
dV

)
=

∫
Ω

(
ϕI

( ∑
e∈ED

ρDeθe

)
( ∑

J∈ND

pJφJ +
∑

J∈NF

c(xJ)φJ

)
dV

)
(8)

Let us also separate each side according to the Dirichlet velocity conditions:

∀I ∈ NT :

∫
Ω

(
ϕI

(∑
e∈ET

ρTeϑe

)( ∑
J∈NT

gJϕJ

)
dV

)
+

∫
Ω

(
ϕI

(∑
e∈ET

ρTeϑe

)( ∑
J∈NF

c(xJ)ϕJ

)
dV

)
=

∫
Ω

(
ϕI

( ∑
e∈ED

ρDeθe

)( ∑
J∈ND

pJφJ

)
dV

)
+

∫
Ω

(
ϕI

( ∑
e∈ED

ρDeθe

)( ∑
J∈NF

c(xJ)φJ

)
dV

)
(9)

Now note from Figure 1 that the only donor elements {e} for which
∫

Ω
θeφJ 6=

0 at any point for any fixed node J is the set of unchanging buffer elements
Ebuf, and that this is the same set of target elements for which ϑeφJ 6= 0 at
any point for any fixed node J . Since these elements are not changing, their
basis functions are the same (ϑe = θe). Since the basis functions φJ and ϕJ

of a fixed node J only cover buffer elements, then they too are equal for all
fixed nodes. Furthermore, we assume that the transfer algorithm for density
leaves the density values of buffer elements unchanged. In total, this means
that Dirichlet contributions to momentum are equal for the donor and target
meshes:

∀I ∈ NT :

∫
Ω

(
ϕI

(∑
e∈ET

ρTeϑe

)( ∑
J∈NF

c(xJ)ϕJ

)
dV

)
=

∫
Ω

(
ϕI

( ∑
e∈ED

ρDeθe

)( ∑
J∈NF

c(xJ)φJ

)
dV

)
(10)
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It also means that the remaining momentum contributions (from non-fixed
nodes) must be made equal for conservation:

∀I ∈ NT :

∫
Ω

(
ϕI

(∑
e∈ET

ρTeϑe

)( ∑
J∈NT

gJϕJ

)
dV

)
=

∫
Ω

(
ϕI

( ∑
e∈ED

ρDeθe

)( ∑
J∈ND

pJφJ

)
dV

)
(11)

We can also factor out the remaining sums over elements and nodes:

∀I ∈ NT :
∑

J∈NT

gJ
∑
e∈ET

ρTe

∫
Ω

ϕIϑeϕJ dV =

∑
J∈ND

pJ
∑
e∈ED

ρDe

∫
Ω

ϕIθeφJ dV (12)

Finally, if we assume that element shape functions are one in the element
and zero elsewhere:

θe(x) =

{
1 x ∈ Ωe

0 x 6∈ Ωe
(13)

Ωe domain of element e

Then we can rewrite Equation 12 as:

∀I ∈ NT :
∑

J∈NT

gJ
∑
e∈ET

ρTe

∫
Ωe

ϕIϕJ dV =

∑
J∈ND

pJ
∑
e∈ED

ρDe

∫
Ωe

ϕIφJ dV (14)

Equation 14 leads directly to a linear system Mg = b if one considers the
degrees of freedom to be the interior target velocities gJ :

MIJ =
∑
e∈ET

ρTe

∫
Ωe

ϕIϕJ dV (15)

bI =
∑

J∈ND

pJ
∑
e∈ED

ρDe

∫
Ωe

ϕIφJ dV (16)
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3 Integration

First, we will separate Equation 16 into terms involving interior and buffer
elements of the donor mesh:

bI =
∑

J∈ND

pJ

( ∑
e∈EDint

ρDe

∫
Ωe

ϕIφJ dV +
∑

e∈Ebuf

ρDe

∫
Ωe

ϕIφJ dV

)
(17)

Since buffer elements are the same in both meshes, we know that for a given
buffer element e and adjacent node I that (ϕI = φI) over the domain Ωe. This
simplifies the second term of Equation 17:

bI =
∑

J∈ND

pJ

( ∑
e∈EDint

ρDe

∫
Ωe

ϕIφJ dV +
∑

e∈Ebuf

ρDe

∫
Ωe

ϕIϕJ dV

)
(18)

So now, for both Equations 15 and 18, we will have to integrate this term
over a target mesh element e, for two target nodes I and J (recall that buffer
elements are a subset of target elements):∫

Ωe

ϕIϕJ dV (19)

This we can express as a numerical integration (leaving aside which points
are used for the moment):

nIP∑
p=1

wpϕI(ξp)ϕJ(ξp) det(Je(ξp)) (20)

This can be simplified quite a bit because the element is linear. First, the
Jacobian Je is constant over the element, and can be factored out:

det(Je)

nIP∑
p=1

wpϕI(ξp)ϕK(ξp) (21)

Second, the global basis functions ϕI and ϕJ restricted to the element do-
main Ωe are just a pair of local element basis functions Ni and Nj where i 6= j.
That means the integral of their product in parametric space is a constant in-
dependent of the element coordinates. Furthermore, due to the symmetry of
tetrahedra, it is the same constant for all i and j. Using the 2nd order accurate
4-point quadrature rule for tetrahedra (and more generally the (d + 1)-point
rule for a d-dimension simplex), we find the following identity:

d+1∑
p=1

(
V0

d+ 1

)
Ni(ξp)Nj(ξp) =

V0

(d+ 1)(d+ 2)
, i 6= j (22)
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The weights wp are all equal to V0/(d + 1), where V0 is the volume of the
parent parametric space element, so that value was factored out. Assuming this
holds true, and because the quadrature rule used is exact for the polynomial
being integrated, then we have the following fully accurate substitution for this
particular integral over a simplex:∫

Ωe

ϕIϕK dV =
det(Je)V0

(d+ 1)(d+ 2)
=

Ve
(d+ 1)(d+ 2)

(23)

Where Ve is the volume (size) of simplex e. Substituting Equation 23 into
Equation 15 yields the following:

MIJ =
1

(d+ 1)(d+ 2)

∑
e∈ET

ρTeVe (24)

And similarly for Equation 18:

bI =
∑

J∈ND

pJ

( ∑
e∈EDint

ρDe

∫
Ωe

ϕIφJ dV +
1

(d+ 1)(d+ 2)

∑
e∈Ebuf

ρDeVe

)
(25)

This leaves us with the more difficult integral:∫
Ωe

ϕIφJ dV, e ∈ EDint, I ∈ NT , J ∈ ND (26)

The trouble in Equation 26 is that ϕI is only fully differentiable in the
domains of target elements, not the donor domains being integrated over. This
is why we use intersections of the interior donor and target elements (recall
from Figure 1 that the domain covered by interior elements is the same is both
meshes). ∫

Ωe

ϕIφJ dV =
∑

o∈ET int

∫
Ωe∩Ωo

ϕIφJ dV (27)

We will use R3D’s polyhedral intersection capability to compute Ωe∩Ωo, and
its polynomial integration capability to integrate the polynomial ϕIφJ over the
intersection polyhedron. ϕI can be expressed as a continuous linear polynomial
f(x, y, z) inside Ωo, likewise for φJ inside Ωe.
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