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Abstract 
The transfer of variables between distinct spatial domains is a problem shared by many research 

fields. Among other applications, it may be required for visualization purposes or for 

intermediate analysis of a process. In any case, two important factors must be considered: 

accuracy and computational performance. The accuracy becomes even more important when 

the results have an impact on the subsequent stages of the process’ analysis, as it could lead to 

incorrect results. The computational performance is a permanent requirement due to the ever-

increasing complexity of the analysed processes. The aim of this work is to present a new 

remapping method, based on Dual Kriging interpolation, developed to enable accurate and 

efficient variable transfer operations between two different domains, discretized with 

hexahedral finite elements. Two strategies are proposed, which take into account different 

selections of interpolation points and are based on specific Finite Element Method features. 

They are compared with the Incremental Volumetric Remapping method in two remapping 

examples, one of which includes a trimming operation, highlighting their advantages and 

limitations. The results show that the Dual Kriging remapping method can contribute to increase 

the accuracy and the computational performance of these operations. 

Keywords: Finite Element Method, Remapping, Dual Kriging, Trimming, Hexahedral finite 

element 

 

1. Introduction 
Engineers have always been drawn to solve complex problems. The Finite Element Method 

(FEM) emerged in the sixties, enabling the solution of problems that could not be solved 

analytically [1, 2]. Nowadays, the FEM is used in diverse engineering fields [3–6], specifically in 

most engineering companies and research centres, which resort to commercial or in-house FEM 

solvers. Whatever the application field, FEM requires the partition of the spatial domain into 

smaller parts, known as finite elements, which define the mesh that approximates the original 

domain. The type of finite elements used can depend on the application field or problem, e.g. 
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[7], which can vary between 1-D, 2-D and 3-D, using interpolation functions of different degrees. 

The linear isoparametric hexahedral and tetrahedral finite elements are commonly used in 3-D 

simulations, adopting different mesh topologies, rendering coarser or finer spatial 

discretizations.  

The solution of nonlinear problems also requires the division of the temporal domain to take 

into account time dependant variables [3–6], which can be related to geometrical, material or 

boundary conditions nonlinearities. Typically, resorting to more divisions – spatial and temporal 

– increases the accuracy of the numerical results, but increases the computational cost [8, 9]. 

Therefore, it is always necessary to find the best compromise between results accuracy and 

computational effort. In terms of spatial discretization, the definition of zones with different 

mesh sizes can be performed either in the pre-processing stage or during the numerical 

simulation. The definition of different zones in the pre-processing is usually carried out 

manually, which contributes to an increase of the time required for this stage. On the other 

hand, during the numerical simulation, the definition of different zones requires the application 

of adaptive mesh refinement/remeshing algorithms [6, 10], in several temporal increments. The 

finite elements are divided or combined depending on predefined conditions (e.g. high value of 

strain [6] and/or high element distortion [11, 12]) in order to provide good results while ensuring 

computational efficiency [8, 10]. In fact, adaptive mesh refinement algorithms are commonly 

used to overcome problems of excessive distortion/deformation of the finite elements, which 

occur in different forming processes [6, 10, 13–15], such as forging, and sheet metal forming. 

The adaptive mesh refinement is usually performed by one of three methods: p-adaptive 

(change of the interpolation degree), h-adaptive (change of the element size), r-adaptive 

(change of the nodes location); or by a combination of them [10]. The improvement of these 

methods is an up to date research topic in computational mechanics, since small improvements 

have a considerable impact on computational performance, due to being applied several times 

during the simulation. 

The adoption of adaptive mesh refinement algorithms involves a remapping step, i.e. the 

transfer of variables between different spatial discretizations [6], which can present a strong 

influence in the accuracy of the results and computational efficiency. Nonetheless, in some 

increments the zone to be remapped can be localized, as in the numerical analysis of trimming 

operations involved in some multi-stage forming processes. Typically, a simplified approach is 

used to model these operations, which consists in the geometrical trimming operations of the 

FE mesh [16]. Thus, after each trimming operation it is also necessary to perform a remapping 

procedure for the numerical variables involved in the subsequent forming steps. In this case, the 

impact of the selected remapping method on the computational efficiency is insignificant, but 

its accuracy can have a strong influence in the results of the subsequent numerical simulation. 

When using the FEM, it can be necessary to transfer the nodal variables (primary unknowns), 

such as forces and displacements; and the state variables (secondary unknowns), that are 

evaluated in the integration points (typically Gauss points), such as the stress and strain state. 

Firsts are usually continuous while seconds are discontinuous (e.g. [6]). 

Jiao and Health [17], divide the remapping methods into four major groups. The first group 

refers to pointwise interpolation and extrapolation methods, such that the variables are 

transferred using a function that interpolates/extrapolates the variables from the donor mesh 

to the target, in one or more stages. The pointwise interpolation can be categorized into two 

types of interpolants: (i) use of the same function as the one for the donor mesh (sometimes 

referred to as consistent interpolation or inverse isoparametric mapping (e.g.: [18, 19])) and (ii) 
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use of basis functions of higher order than the one of the donor basis. According to Batista [20], 

taking into account the mathematical characteristics of these methods, this group can also 

include the ones based on the application of the moving least squares [13, 21] and the 

Superconvergent Patch Recovery methods, developed by Zienkiewicz and Zhu [22]. The second 

group refers to Area/Volume weighted averaging methods (also referred as Finite Volume 

Transfer Method in [14]), which uses a transfer function that is evaluated based on the 

area/volume of intersection between the donor and the target FE. These areas/volumes act as 

a weighting factor defining the contribution of each donor element to the target one (e.g. [23, 

24]). The third group refers to Mortar element methods, which are general techniques for 

projecting data at interfaces between two or more non-conforming subdomains [14]. From a 

mathematical point of view, this method consists in the minimization of a weighted residual, 

where the weight functions are usually chosen from the space spanned by the basis functions 

of the mortar side [25]. The last group refers to specialized methods, which are designed for 

specific applications and do not fall directly into the above categories, but frequently are variants 

or combinations of them. This fourth group includes the direct allocation to the target point of 

the closest donor point [26], the use of different methods according to the type of variable [15], 

and adaptations of the interpolation/extrapolation and area/volume weighted averaging 

methods; by including constraints [27]; and/or considering specific features of the application 

domain or problem [28, 29]. 

 

2. Remapping Methods 
The accurate transfer of variables between different spatial discretizations is imperative, 

independently of the remapping method adopted. Moreover, its computational performance is 

particularly important when the procedure is performed several times, whereas the error is 

accumulated to the following stages (e.g. [6, 14]). In fact, the remapping operation can introduce 

errors due to the approximations used to estimate the values for the target mesh. In order to 

try to control and minimize the unavoidable errors when performing remapping operations, 

several authors [14, 17, 19, 21, 27] point out some desirable characteristics. The method should 

be self-consistent such that when the target and the donor point are coincident, the transfer 

remapping function reduces to the identity operator (zero error). The 

interpolation/extrapolation methods that resort to the donor shape functions cannot 

guarantee, a priori, this condition [21]. On the contrary, Area/Volume weighted averaging 

methods automatically verify this self-consistence condition. The method should also guarantee 

the locality, i.e. the remapped value in a target point should only be affected by the variables of 

the donor mesh in a region of influence. This assures the preservation of discontinuities, related 

with material or geometric interfaces, which must also be present in the remapped mesh. 

However, due to the discrete and approximated natured of the remapping operations, it is 

always expected some degradation (smoothing) of the variable when severe gradients are 

present. Nonetheless, the smoothing should be minimized in order to preserve, as accurately as 

possible, the gradients of the donor mesh. On the other hand, the remapping method can also 

lead to spurious local extreme values, which are non-physical and result in the degradation of 

the numerical simulation result. Accordingly, the remapping algorithm should allow for the 

inclusion of some constraints, such as consistency of equilibrium or motion equations [27], 

consistency between the displacement field and the stress state [19] or boundary conditions 

[19]. 
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In order to take advantage of the characteristics of these applications, several specialized 

remapping methods have been proposed in order to find the best compromise between 

accuracy and computational performance. One example is the application of the moving least 

squares method, proposed by Rashid [21], based on a transfer function. It tries to force the 

equality between the variable field in a volumetric domain of the donor and of the target mesh, 

assuming that each donor integration point has constant state variables in a predefined region. 

Jiao and Heath [17] present a general method, named Common Refinement, which is based on 

the intersection of the donor and target mesh in order to define a third mesh, used as an 

auxiliary for the transfer procedure. The main advantage of this method is that it allows the 

accurate integration of the transfer function, which depends on the shape functions of the target 

and donor meshes. However, it requires a robust and expeditious algorithm for mesh 

intersection, which is considerably challenging to attain when working with solid hexahedral 

finite elements. In this context, also the Incremental Volumetric Remapping (IVR) method was 

developed and applied specifically for the transfer of variables between meshes composed of 

linear isoparametric hexahedrons [30, 31]. This volume-weighted averaging method assumes 

that each donor integration point has constant state variables in a predefined region [21]. Being 

a volume-weighted averaging method, some of the desirable characteristics are inherently 

verified (self-consistency, locality and inexistence of spurious local extrema values), which make 

it particularly interesting for FEM analysis. 

The Dual Kriging method is adopted in the present study to develop a new remapping method, 

which is dedicated to finite element meshes composed by isoparametric hexahedrons. This 

interpolation method is known for being simple, while incurring a small computational cost in 

the interpolation of space-dependent variables [32–35]. Both the Incremental Volumetric and 

the Dual Kriging remapping methods are described in the following sections. These remapping 

methods are implemented in the in-house code DD3TRIM, specifically developed to perform 

trimming and remapping operations, allowing the comparison in terms of accuracy and 

computational efficiency. Two examples are selected to perform the comparison between the 

two remapping methods: the first comprises an analytical function distribution, which is mapped 

between two different finite element meshes, while the second example covers a trimming 

operation performed on a metallic sheet. 

 

2.1. Incremental Volumetric Remapping (IVR) 
This method is based on the finite element discretization and the Gaussian quadrature rule, 

establishing that variables values in the region of a Gauss volume (an eight part of the standard 

brick element) are equal to the state variable quantity placed in the correspondent Gauss point 

[21]. The subdivision of a finite element into eight Gauss volumes is presented in Fig. 1. 

Accordingly, the variable value assigned to a given Gauss point of the target (new) mesh element 

is determined based on a weighted average of the values of the donor (old) mesh. The weight 

function should reflect the fraction of the Gauss volume of each donor element located inside 

the target Gauss volume (Gauss point in evaluation). However, this strategy carries the difficult 

problem of calculating intersecting elements volumes belonging to distinct meshes (see Fig. 2) 

[21, 36]. This issue is overcome by using an incremental volumetric scheme [13] to determine 

the intersecting volume between two finite elements. 

The procedure starts with the division of both finite element meshes in Gauss volumes as shown 

in Fig. 1 (a) and (b). Subsequently, the Gauss volumes of the target mesh are divided in a 
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predefined number of parts (Fig. 1 (c)), defined by the nl  parameter. The centroid of each small 

part of the target Gauss volume is evaluated resorting to the parametric inversion of the shape 

functions. To define which donor Gauss volume contains this centroid (Fig. 2 (c)), the volume 

coordinates method is applied. This straightforward method avoids higher time consuming 

iterative algorithms, such as the ones based in the parametric inversion of the element shape 

functions [13]. The state variable assigned to each single target Gauss volume part is equal to 

the one of the donor Gauss volume, in which the volume part centroid is located, as shown in 

Fig. 2 (c). The number of donor Gauss volumes that contributes for the target Gauss volume (in 

evaluation) is given by the parameter ng , which, for the example presented in Fig. 2 (c), is equal 

to two. The value 𝛼 of the state variable in a Gauss point of the target element is given by: 

 

3

,1

1 ,

nl
ng

j ij

i

i tot i

V

V
 








 , (1) 

where ,j iV  is the j  Gauss volume part of the target mesh contained in the donor Gauss volume 

i ; ,tot iV  and i  are the total volume and the state variable quantity of the i  donor Gauss 

volume, respectively. Note that, since each target Gauss Volume is subdivided in nl  equal 

subdivisions in each direction, it yields a total of 
3nl  divisions per element (Fig. 1 (c)). In brief, 

the volumetric weighting of the variables in the new mesh (Fig. 2 (c)) is given by the intersection 

between the donor Gauss volumes and the centroid of each subvolume. Previous results 

indicate that the nl  parameter allows the control of the remapping accuracy required for the 

remapping operation. The increase of the nl  parameter increases the computational time 

exponentially, while the error reduction stabilizes for values greater than 5 [20, 31]. Thus, in this 

work this value is assumed. 

The IVR method has been previously implemented in the in-house code DD3TRIM, which has 

been specifically developed for performing geometrical trimming operations of 3D meshes, 

composed by linear isoparametric hexahedrons [20, 30, 31]. In sheet metal forming operations, 

these type of elements are typically used with a selective reduced integration scheme [37]. Thus, 

for each element, the state variables are evaluated in eight different integration points, also 

called Gauss Points (GPs) since their spatial positions in the finite element’s natural coordinates 

are defined by the Gauss Quadrature Rule [3, 5]. In previous works, the performance of the IVR 

algorithm was compared with the classic interpolation/extrapolation method, using a transfer 

function based on the shape function of the linear isoparametric elements. Additionally, it was 

compared with the moving least square interpolation method, using an exponential based curve 

as weight function [20]. The results show that the error associated to IVR is lower when 

compared to these other two methods, particularly when increasing the number of consecutive 

remapping operations. In addition, the IVR method is robust in critical situations, such as poor 

geometrical definition of the mesh domain boundaries, where some nodes of the target mesh 

fall outside the donor mesh. However, concerning the computational cost, it was observed that 

the classical extrapolation/interpolation method was clearly the fastest, while the IVR method 

and the one based on moving least squares interpolation presented similar results [20, 30, 31].  
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2.2. Dual Kriging Method (DK) 
Kriging is a geostatistical method developed by Krige [38] and Matheron [39]. This method and 

consequently the ones based on it, present two main characteristics: it is the best linear 

unbiased estimator of a variable and also an exact interpolator. The exact interpolator property 

ensures that, when the original coordinates are provided, the interpolation method will return 

the original values (self-consistency). The Dual Kriging version is applied in the present study as 

it provides an explicit parametric interpolation formula to compute the interpolation value   

for any point with Cartesian coordinates  
T

t x y zx  [32, 40, 41]. In the context of this 

work, this point denotes the target Gauss point (GP). The interpolation function can be 

decomposed in two terms: 

 t t t( ) ( ) ( )d f  x x x   (2) 

The first term, the drift, t( )d x  represents the average or global trend of  t x  and is usually 

a linear polynomial function, obtained from a scalar product such as: 

 T T

t t 1 2 3 4( ) [1 ]d d d x d y d z     dx x , (3) 

where d  is the vector composed by the coefficients that define the average plane obtained 

from the known values at the seed points, i.e., donor GPs. Thus, the linear drift is correlated to 

this plane. In 2-D applications, the last term of tx , z , and of d , 4d , are removed. The second 

part of the equation (2), t( )f x , represents the fluctuation or deviation from  td x , associated 

with each seed point: 

 t t t

1 1

( ) ( ) (| |)
n n

i i i i

i i

f K h K 
 

    xx x , (4) 

where n  is the total number of seed points, i.e. donor GPs; K  is the generalized covariance 

function, which can assume different forms, but it is always a function of the Euclidean norm (

tih ) between the target GP ( t ) and each donor GP ( i ); and   is a weighting factor associated 

with each donor GP. Thus, the general form is obtained by substituting equations (3) and (4) into 

equation (2): 

 t 1 2 3 4 t

1

( ) (| |)
n

i i

i

d d x d y d z K 


      xx x . (5) 

To obtain the value of this function, it is necessary to solve a system of linear equations of order 

1n s  , where s  defines the space dimension. This system is given by: 

    -1
Ku f u K f , (6) 

where K  is called the Kriging matrix, u  is the vector of unknowns, and f  contains the values 

of the variable in the seed points (for further details see e.g., [32, 40, 41]). The vector of 

unknowns is composed by the n  weighting factors i  and the s  scalar quantities that define 

vector d . The symmetric square dense matrix 𝐊, with null diagonal, can be divided into four 

submatrices, each with a different dimension, such as:  
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 
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1 1 1

T

11 12

121 22

1

1 f

1 f

00 0
1 1

00 0

i j

n n n

n

s

K

d

d





     
          
      
         
      
     
     
      

x

x x

xK K
u f

K K

x x

, (7) 

where 11K  is the bigger submatrix, with dimension n n , containing the covariance values 

between each donor point, i.e.,  11 ijK hK , , 1,...,i j n . As previously mentioned, these 

values depend on the covariance function selected. T

21 12K K , is a matrix with dimension 

 1s n  , with the first row equal to one and the coordinates 𝑥, 𝑦 and 𝑧 of each donor GP in 

the second, third and fourth column, respectively. The number of rows of this matrix depends 

on the space dimension 1s  . 22K  is a square matrix with the same dimension as the number 

of rows of 21K ,    1 1s s   , and always contains only null values. 

The accuracy of the results provided by the Dual Kriging method is significantly affected by the 

covariance function selected, as shown by McLean et al. [32]. They compared three different 

functions and concluded that the best was simply given by the Euclidean distance, which is also 

adopted in the present work: 

 t( ) jK h h   xx . (8) 

The (Dual) Kriging is a global interpolation method, i.e. the interpolation function can be 

evaluated only once for the whole domain using the information of all donor points [32, 34, 41]. 

Nevertheless, this procedure is not mandatory which can help save some computational time. 

Furthermore, whatever the number of donor points selected, as long as this set remains 

unchanged, once the Kriging matrix is inverted (see equation (6)), it is only necessary to update 

the values of the variable to be remapped from the donor GP points (vector f ) in order to attain 

the coefficients necessary to evaluate its value for the target (using equation (5)). Thus, unlike 

the strategy adopted in the IVR method, where the same weight value is applied in the 

remapping of all state variables, Kriging interpolation evaluates the drift and the fluctuation (see 

equation (2)) associated with each state variable. The computational performance of the Dual 

Kriging method depends on the size of the linear system of equations to be solved, which in turn 

depends on the number of donor GPs ( n ) selected to interpolate each target GP. Direct 

inversion can be applied for small rank matrixes, but bigger require a direct or an iterative solver, 

due to the non-linear scaling of the required computational time of the first option. In this work, 

the system of linear equations (see equation (6)) is solved through the matrix inversion, since 

this enables a faster evaluation of the Kriging interpolation parameters for several state 

variables, as long as the set of donor GPs remains unchanged, as previously mentioned. 

The implementation of Kriging as a remapping method, applied to each target GP, can be divided 

into three stages: (i) selection of a set of neighbour donor GPs; (ii) evaluation of the Kriging 

coefficients and weighting factors; and (iii) evaluation of each state variable value in the target 

GP. In the first stage, similarly to many numerical methods that allow for a flexible amount of 

inputs, the problem of overfitting or underfitting is present. Generally, overfitting can occur 
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when a mathematical function is forced to intercept too many points, while underfitting occurs 

when there are not enough points to provide a good representation of the domain. It is also 

important to consider the discontinuous nature of the variables, since continuity is ensured 

inside the element but not outside. These two factors oppose the use of a brute force method, 

i.e. simultaneous use of all donor mesh’s GPs. Thus, the alternative is to search for a limited 

number of donor GPs in the neighbourhood. Besides improving accuracy, this also reduces the 

computational cost of the method, particularly by constraining the number of seed points. 

Several selection algorithms for choosing the set of donor GPs were tested, being the most 

promising the ones referred as Master-Slave and Planar methods, which will be described in the 

following (for further details please refer to Diogo [42]). Both involve the knowledge of the mesh 

connectivity and the evaluation of the Cartesian coordinates of the donor and target GPs, 

enabling the subsequent assembly of the Kriging matrix K , its inversion in the second stage of 

the remapping method, and use of the calculated values to evaluate the state variable(s) for the 

target GP. The foremost nomenclature used by both selection methods is defined in Table 1. 

 

2.2.1. Master-Slave selection method 
The Master-Slave method tries to avoid underfitting, overfitting and discontinuity problems, 

while keeping the selection method simple and efficient, by considering the connectivity of the 

donor finite element mesh. As previously mentioned, this procedure is based on the relative 

position of the target GP in the donor mesh. Thus, the nearest node of the donor mesh to the 

target GP is determined to define the Master Node. The selection of the Master node allows the 

definition of the donor finite element, based on the donor mesh connectivity and the parametric 

inversion of the shape functions. The donor finite element that contains the target GP is defined 

as the Master Element and all other elements that share the Master Node are defined as Slave 

Elements. Fig. 3 (a) shows an example of the selection of GPs from the Slave Elements, for a 

target GP located inside a Master Element, which corresponds to the left inferior posterior 

quadrant (omitted to simplify the visualization). The set of donor GPs (see Fig. 3 (a)) is composed 

by: (i) eight GPs of the Master Element (omitted); (ii) four GPs of each Slave Element with only 

one shared face (in blue); (iii) two GPs of each Slave Element with only one shared edge (in 

green); and (iv) one GP of each Slave Element with only one shared vertex (in red). For this 

example, the set of donor GPs is composed by eight GPs from the Master Element and nineteen 

from the Slave Elements, i.e. 27n  . Therefore, in this work the Kriging matrix is directly 

inverted due to its small overall size. 

 

2.2.2. Planar selection method 
This selection method is an alternative to the Master-Slave, where only the GPs located in the 

same layer are considered. Thus, although similar to Master-Slave, it does not consider the 

influence of GPs located in layers different from the target GP. For a target GP located in the 

same position, the set of selected donor GPs (see Fig. 3 (b)) is composed by: (i) four GPs of the 

Master Element located in the same reference face (in blue); (ii) two GPs of each Slave Element 

with one shared edge with the reference face (in green); and (iii) one GP of each Slave Element 

with one shared vertex with the reference face (in red). Thus, for the same target GP used in Fig. 

3 (a), the planar method leads to nine donor GPs, i.e. 9n  , as shown in Fig. 3 (b). 
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Two implementations were tested for the planar selection remapping method, the difference 

being the spatial domain: 3  and 2 . In the first approach the 3D Cartesian coordinates of each 

GP were supplied directly, i.e., the dimension of the T

21 12K K  matrix was  3 1n  . 

However, since the foundation for this method is that the reference plane is the same, the 3-D 

coordinates can be converted to a plane and then converted to a 2-D coordinate system, leading 

to a matrix of dimension equal to  2 1n  . To evaluate this reference plane, two vectors are 

created based on the Master GP and the two GPs belonging to adjacent edges. The cross product 

of these two vectors defines the normal vector, perpendicular to the reference plane, which in 

turn contains the initial vectors. To correct offsets from this reference plane to GPs of the 

adjacent elements, two correction methods were evaluated: the projection of the converted 

coordinates along the normal vector and the rotation about the nearest initial vector. Due to 

similar results, the results presented in this work adopt the projection to the 2-D plane. 

Regarding the two spatial domain implementations ( 3  and 2 ), for the tested examples, it 

was found that the conversion to a 2-D coordinate system provides more accurate results, since 

the first can introduce some spurious gradients, due to the poor conditioning of the matrix, as 

there will be two linearly dependent rows (and columns): the row of ones and the row that 

defines the constant coordinate.  

 

3. Remapping Examples 
This section presents the comparison of both forms of the Dual Kriging remapping method with 

the IVR method, both in terms of computational cost and accuracy. The first example analysed 

deals with remapping between two different finite element meshes, which are composed by 

hexahedral elements (eight nodes and eight GPs). The geometry studied is a cylinder with 100 

mm of radius and 1 mm of thickness, which is discretized with both in-plane structured and 

unstructured meshes, as shown in Fig. 4. The remapping is carried out in two stages, first, from 

the structured to the unstructured mesh (called stage 1) and afterwards, back to the structured 

mesh (called stage 2). In order to quantify the error associated with the remapping method, 

both meshes were initially mapped to the following scalar analytical function [14, 16, 20, 21, 

31]:  

 2 2( , ) 20 ( 1) cos(2 )T r r r   , 
2 2

2

x y
r

a


 , (9) 

where r  and   are the polar coordinates, x  and y  the Cartesian coordinates of each GP, and 

a  is the radius of the cylinder. Based on this definition, the absolute error associated with the 

remapping method E  is defined as: 

 t( , ) ( , ) ( )E r T r    x , (10) 

where T  is the exact value given by the analytical function (9) and   is the interpolated value 

provided by the remapping method. First, the analytical distribution is considered uniform 

through-thickness, while a gradient along the thickness is considered in the second example, i.e. 

the value of T is multiplied by a coefficient depending on the position of the GP along the 

thickness direction. Since both finite element meshes consider two layers through-thickness 

(four GPs along this direction), the distribution with a through-thickness gradient assumes that 
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the values, from the top to the bottom layer, are equal to: T , 0,1 T , 0,1 T  , and T . Fig. 

4 presents the global information of both meshes and the mapped distribution. Due to how the 

in-plane size of the elements changes between both meshes, this can also be interpreted locally 

as a mesh refinement and derefinement operation.  

 

3.1. Accuracy 
The accuracy of the remapping methods is evaluated through the error analysis. Fig. 5 presents 

the error distributions provided by each remapping method for the case without gradient along 

the thickness. The presented contour plots are obtained with the GID post-processor [43] using 

the input values given in the GPs, which are smoothed to the mesh surface. Concerning the first 

remapping operation (stage 1), both Dual Kriging remapping methods (Master-Slave and Planar) 

provide similar error distribution, as shown in Fig. 5 (a). The increased error values occur close 

to the outer boundary, which result from the extrapolation due to the difference in the in-plane 

mesh size between the original mesh and the target mesh. On the other hand, the IVR method 

is less sensitive to the change of the in-plane mesh size, presenting a uniform error distribution 

in the outer boundary (see Fig. 5 (a)). In this case, the maximum error values are located near 

the zone where the change in mesh topology occurs in the donor mesh. Regarding the second 

remapping operation (stage 2), both Dual Kriging remapping strategies provide similar results, 

as shown in in Fig. 5 (b). Nevertheless, the previously observed outer boundary zones with 

largest error become smoother, because the target mesh presents elements with an in-plane 

dimension bigger than the donor mesh, which avoids the extrapolation. Furthermore, the 

Master-Slave method provides slightly reduced areas of error when compared to Planar, as it 

benefits from the use of more values along the thickness ( z ), which are equal for each ( , )r   

pair, although both have the extreme values in the same locations. The IVR method presents 

slightly bigger values of error, specifically in the areas where the target mesh presents smaller 

in-plane elements and near the zone corresponding to the mesh topology transition. 

The histograms of error are shown in Fig. 6 and the corresponding absolute maximum values in 

Table 2, for both stages and all remapping methods. In stage 1, both forms of Dual Kriging 

interpolation provide identical error distribution for both stages. Moreover, they provide a 

smaller error dispersion than the IVR method, both in terms of maximum (positive) and 

minimum (negative) error values. Regarding the error frequency in the stage 2 (see Fig. 6 (b)), it 

is possible to conclude that the IVR method exhibits a higher frequency and increased error 

values. On the other hand, the amplitude of the remapping error is larger for the Planar method 

than for the Master-Slave. 

Concerning stage 1, the Master-Slave and the Planar methods present 99% and 98% of the GPs 

with error value inferior to 0.005, respectively. On the other hand, for the IVR method, about 

50% of the GPs present an error smaller than 0.005, and 21% between 0.005 and 0.01. Regarding 

stage 2, the Master-Slave method yields 99% of the GPs with an error smaller than 0.005, while 

the Planar method provides 98% of all GPs inside this error range. For the IVR method, almost 

50% of GPs present error inferior to 0.005. Therefore, the results are similar in terms of error 

distribution for both stages. 

Fig. 7 presents the error distributions obtained with each remapping method for the case with 

the gradient along the thickness. For stage 1, the distribution obtained with the Master-Slave 

method has the highest spread and error value, while the Planar method presents the lowest. 
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Furthermore, both the Planar and the IVR methods present only localized areas with increased 

error, as shown in Fig. 7 (a). In fact, the Planar and the IVR remapping methods present an error 

distribution similar to the one obtained for the case without through-thickness gradient (see Fig. 

5 (a)), but with error values slightly higher. 

Regarding stage 2, the IVR method presents an error distribution identical to the one obtained 

in stage 1, but with some zones with higher values (see Fig. 7 (b)). The Master Slave’s area with 

increased error values is considerable when compared with the one attained by the other 

methods. The Planar selection method shows an increase in the error dispersion in comparison 

with the previous stage. From the error frequency analysis (see Fig. 8), it is possible to conclude 

that the Master-Slave method presents the highest overall error and spread in both stages, while 

the Planar selection method had the lowest. The extreme values of the error increase slightly 

(see Table 3), when comparing with stage 1, for both the IVR and the Planar selection methods, 

while for the Master-Slave the amplitude decreased. Considering the application of the Planar 

selection method, all GPs had an error inferior to 0.010 in both stages (see Table 3). By applying 

the IVR method, in stage 1, 92% of GPs present an error below 0.010, which reduces to almost 

62% when the Master Slave method is adopted. In stage 2, these ratios decreased to about 88% 

and almost 42%, respectively. The absolute maximum values (see Table 3) increased slightly for 

Planar and IVR, while decreasing for Master-Slave, nevertheless, this method attained the 

highest error values and worst global results for this case. 

By comparing the results obtained for both tests, without and with through-thickness gradient, 

it can be concluded that the error distribution obtained by the Planar selection method is only 

slightly affected by the addition of the gradient. The IVR method presents larger zones with 

increased error values. As for the Master-Slave selection method, the error distribution is 

strongly affected by the gradient, resulting in a wider spread and higher values. In fact, by adding 

the thickness gradient, the error distribution frequency and extreme values increased for all 

methods. However, while the IVR and the Planar selection methods present errors with similar 

orders of magnitude, the Master-Slave method showed poorer performance in the through-

thickness gradient case. This arises from the relative dimensions of the mesh, i.e. the size of the 

elements is much bigger in the in-plane directions than along the thickness, which leads to an 

overweighting of the through thickness direction component. It should be mentioned that, when 

applying the Master-Slave method in the example with the gradient along the thickness 

direction, the extreme error values occur on the interior GPs. However, as shown in Fig. 7, the 

GPs located on the surface also present increased error values when compared to the example 

without the gradient (see Fig. 5 and Fig. 7). Additionally, the maximum absolute errors obtained 

with Planar and Master-Slave methods in stage 2 are in the same locations. Comparing both 

meshes it is clear that the dominating factor for the accuracy is the relative dimension of the 

elements. The elements in those specific zones in stage 1 present an higher in-plane dimension 

than in stage 2, leading to a worse capture of the in-plane gradient and, consequently, to an 

increased error. 

 

3.2. Computational performance 
The computational cost associated exclusively with the remapping operation was evaluated and 

is presented in Table 4, for both examples. For the implemented Dual Kriging methods, it is 

important to mention that: (i) the Master-Slave method selects a higher number of donor GPs; 

thus, (ii) the maximum dimension of the Kriging matrix differs, i.e. for the Planar selection 
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method is 12×12, while for the Master-Slave is 31×31; nonetheless, (iii) the Planar selection 

method requires the conversion from 3D to a 2D (Planar) coordinate system. 

Both Dual Kriging remapping methods are significantly faster than the IVR method, as shown in 

Table 4. At least 87% of the computational time can be saved for non-matching meshes, i.e. 

meshes that have no relation between them and, therefore, require an intersection algorithm 

to identify correspondence between donor and target elements. The existence (or not) of the 

gradient has no effect on the computational time because the number of operations involved is 

exactly the same in both cases.  

The difference in computational time between stage 1 and stage 2 is dictated by the number of 

GPs that need to be evaluated and the donor mesh density. The former increases the time spent 

assembling and inverting the Kriging matrices, while the latter increases the time spent 

searching for the nearest GPs and Master Element. It is also clear that Planar scales comparably 

to IVR, while Master-Slave differ only slightly with the increase of GPs. Comparing Planar and 

Master-Slave selection methods, the critical difference is due to the non-linear increase of the 

time taken assessing the local neighbourhood, and assembling and inverting the Kriging matrix. 

Albeit a small increase, its effects stack due to the high number of GPs. 

The average number of GPs used in each evaluation for the Master-Slave method can be 

estimated by firstly dividing the target GPs into two groups: internal and surface located GPs 

(the number of GPs on the edges is negligible). The former have 27 donor GPs available to define 

the domain, while the latter only have 18 GPs. Thus, the average dimension of the system is 

22.5, compared to the average of 9 for the Planar method. This can explain the higher increase 

of the computational time with the increase of target GPs to be evaluated, obtained for the 

Master-Slave method when compared with the Planar. 

 

4. Trimming Example 
The second example considers a trimming operation, performed on a rectangular specimen that 

was submitted to a bending operation. This example is selected because it leads to a through-

thickness stress gradient similar to the ones that occur in sheet metal forming operations. The 

springback prediction, which is one of the main sources of geometrical and dimensional 

inaccuracy in sheet metal formed components, is known to be very sensitive to the accurate 

evaluation of this gradient (e.g. [44]). Thus, in processes involving trimming operations it is 

important to minimize the impact of the remapping in its evaluation. The rectangular specimen 

has a length of 20 mm (40 elements), width of 5 mm (10 elements) and a thickness of 1 mm (2 

elements). It is constrained on one side and symmetry conditions are applied on both lateral 

faces, while a displacement of 10 mm on the free end is applied, as shown in Fig. 9. After this 

bending operation, the specimen is cut by the plane, also presented in Fig. 9. The geometrical 

trimming operation was performed with DD3TRIM code using a correction method for the 

trimmed elements that relocates the nodes associated with the trimmed elements onto the 

trimming surface [20, 45]. After the trimming process, the remapping of the state variables was 

performed only on the elements altered by this operation (total of 146 GPs). The results for the 

von Mises equivalent stress are shown in Fig. 10, comparing the distribution before and after 

trimming. 

Concerning the upper surface of the specimen shown in Fig. 10, only negligible changes are 

induced by the remapping operation, whatever the method adopted. Furthermore, all methods 
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display similar distributions along the thickness. Since there is no analytical result for direct 

comparison of this example, and based on the results for the previous example, the results 

obtained with the Planar selection method were used as a baseline for comparison. The relative 

error ER  is defined as: 

 
Method Planar

t t

Planar

t

( ) ( )
.

( )
ER

 






x x

x
  (11) 

where Planar  is the value interpolated by the Planar method, in a given target GP with Cartesian 

coordinates tx , and Method  is the value obtained by either the IVR or the Master-Slave method, 

in the same GP. 

Fig. 11 presents the histogram of the relative error for the trimming example. Both the IVR and 

the Master-Slave methods provide results that tend to deviate from the ones obtained with the 

Planar method. As shown in Fig. 10, as expected, the equivalent stress decreases along the 

length of the specimen (from the fixed support), and from the exterior to the interior (along the 

thickness direction). Both IVR and Master-Slave methods consider the influence of the GPs that 

are located near the external surfaces and, consequently, attain slightly higher values for the 

interior GPs than the Planar method. Therefore, the histogram presents more occurrences on 

the positive side of the axis (see equation (11)). 

The difference between the maximum values given by IVR and Master-Slave is about 1.2%. A 

total of 113 and 97 GPs are within the 1% range; and 141 and 139 GPs are within the 2% range, 

respectively for IVR and Master-Slave. At 2.5%, both methods have 144 GPs, the remaining two 

GPs appear between 2.5% and 3% for the IVR method, and 4% and 4.5% for the Master-Slave. 

All methods provide good overall results, and thus, can be used in conjunction with a trimming 

and remapping algorithm. 

Table 5 shows the computational time obtained with the remapping methods tested, showing 

that Dual Kriging interpolation can lead to a quarter of IVR’s computational time. The difference 

between Master-Slave and Planar is small for this case; but, as shown in the previous section, it 

will increase with the number of GPs that require remapping, i.e. 2% is insignificant for most 

applications but will be considerable if applied multiple times. Based on other validation tests, 

the relative proportions will not change significantly up to 5%. These computational time results 

are representative of the time for adaptive mesh refinement algorithms, where no complex 

search algorithms are required due to the information regarding the equivalence between old 

and new finite elements. 

 

5. Conclusions 
This work presents the application of the Dual Kriging interpolation method as remapping 

scheme for FEM state variables between different finite element meshes. Only the standard 8-

node hexahedral finite elements are addressed, considering the state variable assigned to the 

Gauss Points. Since both the computational cost and the accuracy of the Dual Kriging method is 

influenced by the amount of information used, two different selection algorithms were 

developed, namely the Master-Slave and Planar. Additionally, the developed remapping method 

is compared with the IVR method, both in terms of accuracy and computational performance. 
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For the examples considered in the present study, all remapping methods can provide results 

with a good level of accuracy. The first example deals with the remapping of an analytical 

function between finite element meshes with different topology. Assuming there is no gradient 

of the variable along one direction, the Master-Slave and Planar methods present a significant 

improvement over the IVR. When considering a state variable distribution with gradient in all 

directions, combined with a small thickness dimension, a decrease of accuracy is observed for 

the Master-Slave method, due to an overweighting of the through-thickness component, while 

the Planar method kept its level of accuracy. Regarding the computational performance, the 

computational cost incurred for the Dual Kriging is about 15% of the time used in IVR, for non-

related meshes; and about 25% for related meshes, such as the ones used in remapping after 

trimming or remeshing. 
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(a) (b) (c) 

Fig. 1 Subdivision of the finite element mesh. (a) Element partition in Gauss Volumes (GPs in 

blue circles); (b) single Gauss Volume; (c) Partition of the target Gauss Volume in 3nl  equal 

subdivisions in each direction (Adapted from [30]) 

Figure 1



   
(a) (b) (c) 

Fig. 2 2D schematic of the IVR method with donor (blue) and target (black) meshes: (a) detail 

of one target element; (b) partition of the donor and target elements into Gauss Volumes and 

detail of one target Gauss Volume; (c) partition of the target Gauss Volume in 3nl  subvolumes 

and evaluation of each donor Gauss Volume (Adapted from [30]) 

Figure 2



 

 
 

(a)  (b)  

Fig. 3 Comparison of donor GPs’ sets for both Kriging methods, for a target node located in the 

left bottom quadrant: (a) Master-Slave method (Master Element and its eight GPs are 

omitted); (b) Planar selection method 

 

Figure 3



 

 

 
(a)  (b) 

Fig. 4 Scalar variable distribution on both finite element meshes (2 layers through the 

thickness): (a) Mesh 1 composed by 2 688 elements (21 504 GPs) and 4 179 nodes; (b) Mesh 2 

composed by 6 694 elements (53 552 GPs) and 10 575 nodes 
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(a)  (b) 

Fig. 5 Distributions of error: Incremental Volumetric Remapping (IVR), Dual Kriging Master-

Slave and Planar Dual Kriging. Case without through-thickness gradient: (a) Stage 1 and (b) 

Stage 2 
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(a) (b) 

Fig. 6 Histograms of the error in the remapping for the case without through-thickness 

gradient: (a) Stage 1; (b) Stage 2 
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IV
R

 

 

 

 

 

D
K

-M
aste

r-Slave 

 

 

 

 

D
K

-P
lan

ar 

 

 

(a)  (b) 

Fig. 7 Distributions of error: Incremental Volumetric Remapping (IVR), Dual Kriging Master-

Slave and Planar Dual Kriging. Case with through-thickness gradient: (a) Stage 1 and (b) Stage 2 

 

Figure 7



   

  
(a) (b) 

Fig. 8 Histograms of the error in the remapping for the case with through-thickness gradient: 

(a) Stage 1; (b) Stage 2 
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Fig. 9 Schematic representation of the specimen configuration after the bending operation, 

including the trimming plane 

Figure 9



 

  

(a) (b) 

  

(c) (d) 
Fig. 10 Distribution of the equivalent stress after the bending operation ((a) Original) and after 

the trimming operation, as obtained with the Incremental Volumetric Remapping ((b) IVR), 

Dual Kriging Master-Slave (c) and Planar Dual Kriging (d) 

 

Figure 10



 

Fig. 11 Histograms of the relative error in the remapping of the equivalent stress obtained in 

the bending test, after the trimming operation (total of 146 target GPs) 

 

Figure 11



Table 1: Nomenclature adopted in the selection methods used in the Kriging method 

Name Definition 

Master Node Closest node from the donor mesh to the target GP 
Master Element Donor mesh’s element partially defined by the Master Node, containing the 

target GP 
Master GPs Donor mesh’s GPs belonging to the Master Element 
Slave Elements Donor mesh’s elements that share the Master Node, but do not contain the 

target GP 
Slave GPs Donor mesh’s GPs that belong to any Slave Element, which will be considered 

in the Dual Kriging process. 
 

Table 1



Table 2: Maximum error values for the case without through-thickness gradient 

Stage 1  Error  Stage 2  Error 

IVR Max 0.0666  IVR Max 0.0624 
 Min -0.0720   Min -0.0720 
Master-Slave Max 0.0072  Master-Slave Max 0.0103 
 Min -0.0093   Min -0.0074 
Planar Max 0.0072  Planar Max 0.0108 
 Min -0.0093   Min -0.0078 

 

Table 2



Table 3: Maximum values for the case with through-thickness gradient 

Stage 1  Error  Stage 2  Error 

IVR Max 0.0621  IVR Max 0.0682 
 Min -0.0621   Min -0.0682 
Master-Slave Max 0.2940  Master-Slave Max 0.2256 
 Min -0.2940   Min -0.2256 
Planar Max 0.0093  Planar Max 0.0097 
 Min -0.0093   Min -0.0097 

 

Table 3



Table 4: Computational time and relative difference of the Dual Kriging methods to IVR 

 Time (s) Time (s) Time (s) 

Operation IVR ( 5nl   ) Master-Slave Planar 

With Gradient 

Stage 1 216 29 (13%) 23 (11%) 

Stage 2 197 24 (12%) 22 (11%) 

Without Gradient 

Stage 1 216 29 (13%) 23 (11%) 

Stage 2 197 24 (12%) 22 (11%) 
 

 

Average time for 12 executions on an i7-4860HQ 2.40-3.20 GHz, always discarding two extreme values. Values 
rounded. 

Table 4



Table 5: Computational Time and relative difference of the Dual Kriging methods to IVR: Trimming Example 

Operation IVR (𝑛𝑙=5) Master-Slave Planar 

Remapping Step 4.47 1.13 (25.2%) 1.06 (23.7%) 
Average time for 12 executions on an i7-4860HQ 2.40-3.20 GHz, always discarding two extreme values. 

 

Table 5


