ABOUT US

RESEARCH

RESEARCHERS

REPORTS

SOFTWARE

FACILITIES

EMAIL SERVICES

WIKIS

AuthorR.C. Picu and A. Rakshit
TitleDynamics of free chains in polymer nanocomposites
Year2007
JournalJournal of Chemical Physics
Volume126
Pages144909
AbstractThe dynamics of entangled polymeric chains in a polymer filled with nanoparticles is studied by means of molecular dynamics simulations of a model system. The primary objective is to study to what extent the reptation of polymers not in direct contact with fillers is modified with respect to the neat material. To this end, two systems are considered: A regular filled material in which the filler-polymer affinity is controlled, and a system in which the beads in contact with the filler at the beginning of the production phase of the simulation are tethered to the filler surface. This second system represents the limit case of long polymer-filler attachment time. In this case attention is focused on the free chains of the melt. The dynamics in the two models is different. In the filled system uniform slowing down for all Rouse modes is observed. The effect varies monotonically with the filler-polymer affinity. Up to saturation, this behavior may be captured by usual models with an effective, affinity-dependent, friction coefficient. In the system with grafted chains, the free chain Rouse dynamics is identical to that in the neat material, except for the longest modes which are significantly slowed down. More interestingly, the dynamics of the free chains depends in a nonmonotonic way on the polymer-filler affinity, although the free chains do not come in direct contact with the filler. This effect is due to small changes in the structure of the polydisperse brush upon modification of the affinity. Specifically, the density of the brush and the amount of interpenetration of free and grafted chains depend on the filler-polymer affinity. The use of a reptation model with modified tube diameter to capture this behavior is discussed.
DOI Link10.1063/1.2719196